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Abstract

Advances in modern cryptography for secret-key agreement are driving the develop-

ment of new methods and techniques in key distillation. Most of these developments,

focusing on information reconciliation and privacy amplification, are for the direct

benefit of quantum key distribution (QKD). In this context, information reconcilia-

tion has historically been done using heavily interactive protocols, i.e. with a high

number of channel communications, such as the well-known Cascade. In this work

we show how modern coding techniques can improve the performance of these me-

thods for information reconciliation in QKD. Here, we propose the use of low-density

parity-check (LDPC) codes, since they are good both in efficiency and throughput. A

price to pay, a priori, using LDPC codes is that good efficiency is only attained for

very long codes and in a very narrow range of error rates. This forces to use several

codes in cases when the error rate varies significantly in different uses of the channel,

a common situation for instance in QKD. To overcome these problems, this study

examines various techniques for adapting LDPC codes, thus reducing the number

of codes needed to cover the target range of error rates. These techniques are also

used to improve the average efficiency of short-length LDPC codes based on a feed-

back coding scheme. The importance of short codes lies in the fact that they can be

used for high throughput hardware implementations. In a further advancement, a

protocol is proposed that avoids the a priori error rate estimation required in other

approaches. This blind protocol also brings interesting implications to the finite key
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analysis.

Keyword: quantum key distribution, key distillation, information reconciliation, low-

density parity-check codes, rate-adaptive, feedback coding.
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Resumen (Spanish)

Los avances en la criptografía moderna para el acuerdo de clave secreta están em-

pujando el desarrollo de nuevos métodos y técnicas para la destilación de claves.

La mayoría de estos desarrollos, centrados en la reconciliación de información y la

amplificación de privacidad, proporcionan un beneficio directo para la distribución

cuántica de claves (QKD). En este contexto, la reconciliación de información se ha

realizado históricamente por medio de protocolos altamente interativos, es decir, con

un alto número de comunicaciones, tal y como ocurre con el protocolo Cascade. En

este trabajo mostramos cómo las técnicas de codificación modernas pueden mejo-

rar el rendimiento de estos métodos para la reconciliación de información en QKD.

Proponemos el uso de códigos low-density parity-check (LDPC), puesto que estos son

buenos tanto en eficiencia como en tasa de corrección. Un precio a pagar, a priori, uti-

lizando códigos LDPC es que una buena eficiencia sólo se alcanza para códigos muy

largos y en un rango de error limitado. Este hecho nos obliga a utilizar varios códigos

en aquellos casos en los que la tasa de error varía significativamente para distintos

usos del canal, una situación común por ejemplo en QKD. Para superar estos proble-

mas, en este trabajo analizamos varias técnicas para la adaptación de códigos LDPC,

y así poder reducir el número de códigos necesarios para cubrir el rango de errores

deseado. Estas técnicas son también utilizadas para mejorar la eficiencia prome-

dio de códigos LDPC cortos en un esquema de codificación con retroalimentación

o realimentación (mensaje de retorno). El interés de los códigos cortos reside en el
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hecho de que estos pueden ser utilizados para implementaciones hardware de alto

rendimiento. En un avance posterior, proponemos un nuevo protocolo que evita la

estimación inicial de la tasa de error, requerida en otras propuestas. Este protocolo

ciego también nos brinda implicaciones interesantes en el análisis de clave finita.

Palabras clave: distribución cuántica de claves, reconciliación de información, códi-

gos low-density parity-check, adaptación de la tasa de información, codificación con

reentrada de información.
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Chapter 1

Introduction

Charles H. Bennett and Gilles Brassard combined two originally unconnected disci-

plines, cryptography and quantum mechanics, to propose the first quantum cryptog-

raphy protocol in 1984 [1]. It is then when the well-known BB84 protocol came to

light, and a new discipline emerged with this: quantum cryptography1. In the BB84

protocol two legitimate parties, typically named Alice and Bob, want to agree on a

common information-theoretic secret-key even in the presence of any adversary or

eavesdropper, typically named Eve. To accomplish this, the parties first communi-

cate through a quantum channel (e.g. free air or optical fiber) whereby the parties

exchange quantum states (e.g. single photons) carrying classical information, the raw

key. In a second step, the parties communicate over a noiseless, public and authen-

ticated channel to conclude the protocol with a basis reconciliation procedure, also

referred as sifting. At this point, assuming perfect communication —i.e. without

noise in the quantum channel nor in the devices— and no eavesdropping, Alice and

Bob share two identical strings, the sifted key. Both procedures belong to a family of

secret-key agreement protocols known as quantum key distribution (QKD) or quantum

1 It should be noted that the origin of quantum cryptography is probably due to the commonly

unknown but original idea of quantum money proposed by Stephan Wiesner [2].
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Chapter 1 Introduction

key growing2.

Unfortunately, any physical implementation of a QKD protocol is affected by im-

perfections in the devices and the quantum channel. These imperfections introduce

noise into the shared strings, making them different. In addition, further discrepan-

cies can be also introduced by any hypothetical eavesdropper wiretapping the quan-

tum channel, and thus modifying the transmitted information. Therefore, both par-

ties, Alice and Bob, need to reconcile those discrepancies in their strings to make

them identical. This process is known as information reconciliation, or simply reconci-

liation [4, 5]. The parties disclose side information about the shared strings through

a public but authenticated channel, such that this information can be read but it

cannot be modified by an adversary. The adversary or eavesdropper gains informa-

tion about the secret-key both by wiretapping the quantum channel and listening

the public discussion for the reconciliation. Afterward, the parties must agree on an

additional procedure, called privacy amplification [6, 7], used to reduce the informa-

tion about the key that may have been derived by any eavesdropper. In the privacy

amplification procedure the parties amplify the uncertainty of the eavesdropper at

the expense of compressing their shared strings. Then, the parties generate a com-

mon information-theoretic secret-key. Both procedures, information reconciliation

and privacy amplification, are part of a process known as key distillation [8–10].

An optimal reconciliation procedure discloses the minimum information required

for correcting all discrepancies between two previously shared keys, thus minimizing

the key material that is discarded during the privacy amplification, and maximizing

the final secret-key length. The performance of a QKD protocol —i.e. secret-key

rate— depends on both (1) the efficiency in the preparation, manipulation and mea-

surement of quantum states [3], and (2) the efficiency of those classical procedures

2A QKD protocol uses part of an exchanged key to authenticate following communications. There-

fore, the protocol also requires an initial secret-key, shared by both parties, to authenticate the first

communications. We can see then a QKD protocol as a quantum key growing (or quantum secret

growing) protocol, where from an initial secret the parties generate a larger secret-key [3].

4



1.1 Background

carried out for key distillation.

We consider in this work the scenario described above where the quantum channel

is a noisy channel represented by a binary symmetric channel (BSC) with crossover

probability ǫ, since errors in the quantum channel are considered uncorrelated (dis-

crete memoryless channel) and symmetric. It should be noted that in this work we

refer to the error rate in the channel as crossover probability, while in the QKD lite-

rature it is usually known as quantum bit error rate or QBER.

1.1 Background

Information reconciliation in the secret-key agreement context is a problem already

studied for the authors of the original BB84 protocol [4–6]. In the pioneer BBBSS

protocol [4] the authors propose a reconciliation protocol based in the exchange of a

number of syndromes3 per transmitted key. A syndrome consists of a set of parity-

check equations, and a block (as used in Refs. [4,5]) consists of all symbols or key bits

involved in a parity-check equation. If any parity-check equation of an exchanged

syndrome is not verified, the parties carry out a binary or dichotomic search to find

the corresponding error within that block. Note that, in each parity-check equation

only an odd number of errors can be detected, but only one of them can be corrected

using a binary search. The procedure works iteratively shuffling the bits of the key

to reconcile, and exchanging successive syndromes.

Later, in Ref. [5] the authors realized that each located error produces side infor-

mation that can be used with a previously exchanged syndrome. The new protocol is

called Cascade in reference to the iterative or cascading process of identifying errors

after each new error found. The protocol is characterized by one parameter: the block

size, i.e. the number of bits involved in every parity-check equation of the syndrome.

3Originally, the authors write about the parity of blocks without introduce the concept of syndrome

commonly used in the communication and information theory community. For convenience and

consistency with the classic literature in the community we prefer to use this concept.
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An initial value for this block size k1 is determined depending on the channel para-

meter ǫ or quantum bit error rate, k1 ≈ 0.73/ǫ [11]. In each step the block size is

doubled, i.e. the block size for the i-th step is determined as ki = 2ki−1.

Several optimizations were proposed for the BBBSS and Cascade protocols [12–20].

However, these protocols are highly interactive since they require many communica-

tion rounds. The parties have to exchange a large number of messages where parities

of different blocks and sub-blocks of a sifted key are transmitted. Despite of the in-

teractivity of Cascade, it continues being one of the most widely used protocols for

information reconciliation in QKD, probably due to its simplicity and relatively good

efficiency.

Other protocols have been also proposed in the literature. For instance, in Winnow

the authors propose the use of Hamming codes for the calculation of separate syn-

dromes in each block instead of a simple parity-check equation [21]. However, the

efficiency of this protocol is still far from the theoretical limit or Shannon limit (see

Section 2.3 below).

As early as 2003 Chip Elliott, from the DARPA group in Los Alamos, hinted at

the use of parity-checks as in telecommunication systems [22], but the group did

not present any result referring to the use of low-density parity-check (LDPC) codes

until one year later [23, 24]. This is one of the first applications of the modern coding

theory [25] to the information reconciliation problem in QKD. Furthermore, the use

of LDPC codes in the field remained stalled until 2009, it is then when specific codes

for several information rates were designed taking into account the communication

channel considered for QKD [26]. Recently, LDPC codes are becoming of interest in

QKD and they have also been implemented for QKD networks [27, 28].
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1.2 Motivation

Since the publication of the first quantum cryptography protocol, QKD has matured

into a commercial technology. Nowadays, it is even possible to find manufacturers

of QKD systems selling their products. Nevertheless, this technology is still far from

reaching its potential due to the lack of suitable developments in some of its funda-

mental processes, such as the key distillation or, more precisely, the key reconciliation

step.

As commented above, information reconciliation for the secret-key agreement is

a problem already addressed in the literature. Currently, we can find some well-

known protocols for this purpose, such as the previously mentioned Cascade. This is

a protocol specifically designed for information reconciliation in the QKD context. It

attempts to minimize the information disclosed using an estimation of the error rate

in the sifted key. However, it has the drawback of interactivity, requiring lots of chan-

nel uses that limit the final rate of reconciled key. As an alternative to Cascade, we

analyze several modern techniques for correcting errors adapted to the problem of

information reconciliation. We focus this study on three main objectives: (1) improve

the efficiency in the reconciliation process —i.e. minimize the amount information

disclosed during the reconciliation—, (2) reduce the number of messages communi-

cated through the channel, and (3) increase the throughput of final reconciled key.

This work focuses on the use of binary low-density parity-check (LDPC) codes

[29–31] for the information reconciliation problem. LDPC codes were specially de-

signed for the binary symmetric channel (BSC), and adapted for the source coding

with side information problem using syndrome source coding. Several techniques for

the construction of rate-adaptive LDPC codes are studied. Using these techniques,

LDPC codes are adapted for different error rates, minimizing the information publi-

shed for reconciliation. A protocol based on a feedback communication scheme is

also analyzed to improve the average efficiency of short length rate-adaptive LDPC

codes. The proposed interactive approach, called blind reconciliation, allows to re-
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concile a key without any channel parameter estimation. This work is based on the

previously published papers [26, 32–37].
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Chapter 2

Notation and Information-Theoretic

Preliminaries

This research, as many others, is a consequence of the original work published by

Claude E. Shannon in 1940s. We highly recommend reading his two famous contri-

butions [38,39] where the author introduces both disciplines, information theory and

information-theoretic security (or theoretical secrecy as referred by Shannon), related

to the secret-key distillation here discussed.

Information summarized here has been mostly obtained from the book of Thomas

M. Cover and Joy A. Thomas [40]. In addition, the books of the following authors have

also been consulted throughout this work, David J.C. MacKay [41], Gilles Van Ass-

che [42], Susan Loepp and William K. Wootters [43], and Thomas J. Richardson and

Rüdiger L. Urbanke [25].

2.1 Notation

For convenience to the reader, this contribution was written using the same notation

throughout the document. Random variables are denoted in capital letters using the

final letters of the alphabet, X, Y, Z. Matrices are also denoted in uppercase but using

9
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preferably the first letters of the alphabet, A, B, C. Vectors are denoted in boldface

lowercase, x, y, z, and each element of a vector is denoted by a subscript, always

beginning by 1, x1, x2, x3. xt and Ht denote the transpose vector and the transpose

matrix, respectively. Finally, sets are denoted in uppercase using Calligraphy style,

A,B, C.

2.2 Discrete Probability Theory

2.2.1 Uncertainty and Entropy

Entropy

Let X be a discrete random variable with possible values within the set X , and let

pX(x) be the probability mass function defined for each value x ∈ X , pX(x) = Pr(X =

x), such that ∑
x∈X

pX(x) = 1. We denote this probability mass function by p(x) rather

than pX(x), for convenience.

Definition 1. Let X be a discrete random variable with discrete alphabet X and probability

mass function p(x). The entropy, or Shannon entropy [38], of X is given by:

H(X) = − ∑
x∈X

p(x) log p(x) (2.1)

This entropy is a measure of the average uncertainty of a single random variable.

Unless stated otherwise we use the logarithm base 2, even when the subscript is

omitted for convenience.

When the alphabet X consists of two values, the Shannon entropy is measured in

bits. The associated function, typically referred as binary Shannon entropy and denoted

by h(p), is given by:

h(p) = −p log2 p− (1− p) log2(1− p) (2.2)
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Figure 2.1: Binary Shannon entropy.

where we consider p is the probability that the bit value is 0, p = Pr(x = 0), and the

complementary 1− p the probability of 1, since Pr(x = 0) + Pr(x = 1) = 1.

Notice that, although 0 log2 0 is not mathematically defined, the convention 0 log2 0 =

0 is used. Figure 2.1 shows how this function is maximized for the equiprobable case,

p = 1/2.

Conditional Entropy

We can define conditional entropy, denoted by H(X|Y), as the entropy of a random

variable conditional on the knowledge of another random variable.

Definition 2. Let X and Y be two discrete random variables with discrete alphabets X and

Y , respectively, and joint probability distribution p(x, y). The conditional entropy of X given

Y is defined as:

H(X|Y) = − ∑
x∈X

∑
y∈Y

p(x, y) log p(x|y) (2.3)

11
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Mutual Information

The mutual information I(X; Y) is a measure of the dependence between the two

random variables.

Definition 3. Let X and Y be two discrete random variables with discrete alphabets X and

Y , respectively, and joint probability distribution p(x, y). The mutual information of X and

Y is given by:

I(X; Y) = − ∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(2.4)

We can also define the mutual information between two random variables as a

function of the entropy and the conditional entropy of both variables as follow:

I(X; Y) = H(X)− H(X|Y) (2.5)

= H(Y)− H(Y|X) (2.6)

= I(Y; X) (2.7)

As shown in the previous equation, the mutual information is symmetric in X

and Y. This is always non-negative, and equal to zero if and only if X and Y are

independent variables.

2.3 Communication Theory

When considering the information reconciliation problem in the QKD context we

commonly use a discrete memoryless channel to model how errors occur during the

communication through the quantum channel. We usually model this discrete me-

moryless channel as binary symmetric channel (BSC), since it consists of two binary

alphabets for input and output, X and Y respectively, and a symmetric probability

transition matrix p(y|x) = p(x|y), such that x ∈ X and y ∈ Y. This channel is said
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to be memoryless when the probability of observing the output symbol y, given that

the symbol x was transmitted, p(y|x), is conditionally independent of previous inputs

and outputs in the channel.

Communication Channel

A communication channel is a system in which the output depends probabilistically on

the input. This is characterized by a probability transition matrix p(y|x) defined for

each value of x and y, input and output respectively, that determines the conditional

distribution of the output given the input.

Channel Capacity

Let X and Y be two variables taking values within an input and output alphabet,

X and Y respectively, both representing the input and output of a communication

channel.

Definition 4. The capacity C for this channel is defined as the maximum mutual information

between input and output.

C = max
p(x)

I(X; Y) (2.8)

where the maximum is taken over all possible input distributions p(x).

Information Rate

Definition 5. The information rate R is the ratio between the bits carrying information, k,

and the total amount of bits sent, n.

R =
k

n
=

n−m

n
(2.9)

where m is, thus, the bits of redundancy.
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For every communication channel there exist an upper bound on the information

rate typically called the Shannon limit, it is the channel capacity. Thus, R ≤ C.

Binary Symmetric Channel

The binary symmetric channel, or BSC, is one the simplest channels for communi-

cations where errors are considered. In this discrete memoryless channel, input and

output values are considered within the binary alphabet B = {0, 1}. An error is

represented by a transition from one value to the other as shown in Figure 2.2. The

channel is considered symmetric since the probability (crossover probability) to get

an error in the channel, ǫ, is considered constant for every symbol. Thus, the channel

is fully characterized by its crossover probability, ǫ, and it is commonly denoted by

BSC(ǫ).

The mutual information for input and output in this channel is upper bounded

by [40]:

I(X; Y) = H(Y)− H(Y|X) (2.10)

= H(Y)−∑ p(x)H(Y|X = x) (2.11)

= H(Y)−∑ p(x)H(ǫ) (2.12)

= H(Y)− H(ǫ) (2.13)

≤ 1− H(ǫ) (2.14)

The capacity as defined in Eq. (2.8) is then given by:

CBSC(ǫ) = 1− h(ǫ) (2.15)

where h(ǫ) is the binary Shannon entropy as defined in Eq. (2.2).
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Figure 2.2: Binary symmetric channel with crossover probability ǫ.

Figure 2.3: Binary erasure channel with erasure probability α.

Binary Erasure Channel

A channel similar to the binary symmetric channel is the one described below. The

binary erasure channel (BEC) is also a discrete memoryless channel, where input

values are considered within the binary alphabet B = {0, 1}, but the output alphabet

includes an additional element, the erasure (see Figure 2.3). When an error occurs

in this channel the transmitted bit value is lost. It is depicted in Figure 2.3 with a

transition from the initial value to the erasure. The channel is then characterized by

the erasure probability, α, and it is commonly denoted by BEC(α).

The capacity of this channel is given by [40]:
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CBEC(α) = max
p(x)

I(X; Y) (2.16)

= max
p(x)

(H(X)− H(X|Y)) (2.17)

= max
p(x)

(H(X)− H(X|Y = e)
︸ ︷︷ ︸

H(X)

Pr(Y = e)
︸ ︷︷ ︸

α

) (2.18)

= max
p(x)

(H(X)− H(X)α) (2.19)

= max
p(x)

(H(X)(1− α)) (2.20)

= 1− α (2.21)

2.4 Coding Theory

2.4.1 Linear Codes

Let Fq be a finite field with q elements, sometimes referred as the Galois field GF(q),

and let F
n
q be the vector space containing all n-length vectors. We define a linear code

as follows.

Definition 6. A linear code of length n and dimension k over Fq, denoted by C(n, k), is a

linear subspace of F
n
q , C ⊆ F

n
q .

In other words, we say that a non empty C(n, k) is a linear code if:

1. For every pair of n-length vectors x, y ∈ C we have that x + y ∈ C.

2. For every α ∈ Fq and x ∈ C we also have that α · x ∈ C.

3. And 0 ∈ C.

Note that, for convenience, we omit the length and dimension of the code, and we

denote it by C instead of C(n, k), when there is no potential for ambiguity.

Definition 7. Every n-length vector x in a code, x ∈ C, is a codeword.

Therefore, the set composed of all codewords makes up a code.
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Generator Matrix

A linear code C(n, k) can be described by a k × n matrix G, called generator matrix.

Rows in the matrix G form a basis for the subspace C, such that every n-length vector

of the code x is calculated as x = uG, for all u ∈ F
k
q. And thus:

C = {x : x = uG, ∀u ∈ F
k
q} (2.22)

Parity-Check Matrix

A linear code C(n, k) is equivalently described by a (n− k)× n matrix H, called parity-

check matrix. Each row in the matrix H represents a n-length parity-check equation

that has to be satisfied by every codeword x, such that:

C = {x : Hxt = 0} (2.23)

In other words, the set of codewords composing the code x = (x1, x2, ..., xn) consist

of all solutions for m independent parity-check equations:

n

∑
k=1

Hj,k · xk = 0 , 1 ≤ j ≤ m (2.24)

where m = n− k.

A parity-check matrix H corresponding to a generator matrix G can be obtained

by:

GHt = 0 (2.25)

If H has full row rank, then the information rate of the code is k/n.

Binary Linear Codes

When working with binary linear codes we commonly use two measures to judge

some code properties. Let C(n, k) be a binary linear code. We define the Hamming
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weight and distance as follow.

Definition 8. Let x be a codeword, x ∈ C. The Hamming weight of x, denoted by w(x), is

defined as the number of ones in x.

Definition 9. Let x and y be two binary words. The Hamming distance between x and y,

denoted by dH(x, y), is defined as number of bits where both words differ, thus dH(x, y) =

w(x⊕ y).

Cosets

Let C ⊂ F
n
q be a linear code.

Definition 10. A coset of C is the subset of F
n
q obtained by adding any n-length vector

y ∈ F
n
q to every codeword in C, and it is denoted by y + C.

y + C = {x + y : ∀x ∈ C} (2.26)

It should be noted that from every n-length vector in a coset we obtain the same

coset, i.e. given y ∈ x + C we have that y + C = x + C. Since y ∈ x + C there exist

some z ∈ C such that y = x + z, and thus we can construct y + C as follows:

y + C = {y + u : ∀u ∈ C} (2.27)

= {x + z + u : ∀u ∈ C} (2.28)

= {x + v : ∀v ∈ C} = x + C (2.29)

The lowest weight vector in a coset is called coset leader. Given the above property,

we can use then this coset leader to index every coset. However, a coset leader need

not be unique, and therefore we can use more that one leader to index a coset.

Let H be the parity-check matrix of a code C.

Definition 11. The syndrome of any word x, denoted by s(x), is defined as s(x) = Hxt.
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Other interesting property of cosets is that the syndrome of two words x and y

coincides, i.e. s(x) = s(y), if and only if both words belong to the same coset.

2.4.2 Bipartite and Tanner Graphs

A parity-check matrix, and thus a linear code, can be equivalently represented by a

bipartite graph, also called Tanner graph [44]. Let G(V ; E) be an undirected graph

with vertices and edges belonging to the sets V and E , respectively. The graph G

is said to be bipartite if the set V is composed by two disjoint subsets of vertices.

When referring to a code, we call both symbol and check nodes1, although sometimes

they are also referred as variable and parity nodes, respectively. The set of symbol

nodes is typically denoted by S = {s1, s2, ..., sn} and the set of check nodes by P =

{c1, c2, ..., cm}, such that V = S ∪ P and S ∩ P = ∅. In a Tanner graph, every

symbol node si and check node cj corresponds to the i-th column and j-th row in

the equivalent parity-check matrix, respectively. Therefore, in a binary linear code a

symbol node si is connected by an edge to a check node cj if the entry Hj,i = 1.

An example is depicted in Figure 2.4. The figure shows the Tanner graph co-

rresponding to a code defined by the parity-check matrix H described in Eq. (2.30).

Symbol nodes are commonly depicted by circles, and check nodes by boxes.

H =














0 1 0 1 1 0 0 1 0 1

1 0 0 0 0 1 1 0 1 1

0 0 1 1 0 1 0 1 1 0

0 1 1 0 0 1 1 0 0 1

1 0 0 0 1 0 1 1 1 0














(2.30)

The number of edges incident to a symbol node si is called symbol node degree and

denoted by d(si). Similarly, the number of edges incident to a check node cj is called

check node degree and denoted by d(cj). Symbol and check node degrees, d(si) and

1Henceforth, we use the term node instead of vertex when referring to a code graph.
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Figure 2.4: Bipartite or Tanner graph, and parity-check equations.

d(cj), correspond to the number of ones in the i-th column and j-th row of the parity-

check matrix, respectively. In Figure 2.4 every check node has a constant degree,

d(cj) = 5 for all 1 ≤ j ≤ 5, but different symbol node degrees, d(si) = 2 for 1 ≤ i ≤ 5

and d(si) = 3 for 5 < i ≤ 10.

Adjacent Nodes

Two nodes are said to be adjacent if both are directly connected by an edge. Note that,

in a Tanner graph as defined above, a symbol node is adjacent to one or more check

nodes, but never to other symbol nodes. Similarly, a check node is adjacent to one or

more symbol nodes, but never to other check nodes.

In the graph literature, the term neighbor is usually referred to a set of nodes

adjacent to other node. Given a m× n parity-check matrix H. Let N (j) denote the

set of symbol nodes adjacent to the check node cj, this is given by N (j) = {i : Hj,i =

1, 1 ≤ i ≤ n}, and let M(i) be the corresponding set of check nodes adjacent to the

symbol node si,M(i) = {j : Hj,i = 1, 1 ≤ j ≤ m}.

In this work, we extend the concept of neighborhood for two symbol nodes as

follows. Two symbol nodes, si and sk, are said to be next neighbors if both are directly
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connected through a common check node, i.e. M(i) ∩M(k) 6= ∅, and thus there

exist a 2-length path consisting of two edges that connect both symbols. Let N 2(k)

denote the next neighboring set of a symbol node sk, it is given by:

N 2(k) = {i : i ∈ N (j), ∀j ∈ M(k)} (2.31)

Cycles

In a graph, a path is a sequence of adjacent nodes. In a Tanner graph, this is an

alternating sequence of symbol and check nodes. In this context, it is assumed that

every path is simple, i.e. there are no repeated nodes in the path.

Definition 12. In a graph, a path that starts and ends at the same node is called closed path

or cycle.

It should be noted that any finite length graph has necessarily cycles. An n-length

cycle is a cycle with n vertices (or n edges). Cycles in a Tanner graph have always an

even length.

Definition 13. The girth of a graph is the length of a shortest cycle in the graph.

Subgraphs and Local Graphs

Let G(V ; E) be a graph, the subgraph G′(V ′; E ′), such that V ′ ⊆ V and E ′ ⊆ E , is an

induced subgraph if for every edge e ∈ E connecting two nodes vi, vj ∈ V we have that

e ∈ E ′ if and only if vi, vj ∈ V
′.

Starting from a node, we can expand the induced subgraph called local graph first

adding those nodes and edges with the shortest path to the initial node.

Assuming that there are no cycles in a local graph, the depth of this local graph is

the length of the longest path.
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Information Reconciliation with

Low-Density Parity-Check Codes
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Chapter 3

Information Reconciliation and

Low-Density Parity-Check Codes

This chapter is organized as follows. In Section 3.1 we introduce the problem of

information reconciliation and its equivalence to the source coding with side infor-

mation problem proposed by Slepian and Wolf. Afterward, we discuss the relation

discovered by Wyner between channel coding and Slepian-Wolf coding. Next, in Sec-

tion 3.2 we introduce low-density parity-check (LDPC) codes and the most common

techniques used for their decoding. We emphasize on the iterative message-passing

decoding based on belief propagation. Finally, in Section 3.3 we propose a new algo-

rithm to construct good irregular LDPC codes that belong to an ensemble of codes.

3.1 Introduction to Information Reconciliation

In this section we consider the problem of information reconciliation from an infor-

mation theoretic perspective and study how common coding techniques can be used

for this problem.

Information reconciliation refers to any method used to ensure that two parties

agree on a common string provided they have access to two correlated sequences
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x and y [42]. During reconciliation two parties exchange a set of messages M over

a noiseless channel, such that at the end of the process they agree on some string

function of their sequences and the exchanged messages. In our case, the correlated

sequences are obtained by Alice and Bob after the quantum phase of a QKD protocol.

It does not matter whether an actual quantum channel has been used to transmit

qubits from Alice to Bob, as in a standard prepare and measure protocol or an en-

tangled pairs emitter acts as the source of correlations. In both cases, assuming that

errors and attacks are independent identically distributed, X and Y can be regarded

as correlated random variables and every symbol in Y can be seen as given by tran-

sition probability pW(y|x), or equivalently as if every symbol were the output of a

memoryless channel W.

Typically, channels are classified in families characterized by some continuous

variable, ξ, selected to parameterize its behavior. The variable ξ is chosen such that

increasing values of ξ imply a degraded version of the channel [31]. For example, the

family of binary symmetric channels is parameterized by the crossover probability

and the family of additive white Gaussian noise channels by the signal-to-noise ratio.

A channel Wξ ′ is a degraded, or noisier, version of the channel Wξ if:

pWξ′
(y′|x) = pQ(y

′|y) pWξ
(y|x) (3.1)

where Q is some auxiliary channel.

Let the information rate be the proportion of non redundant symbols sent through

a channel. A linear code C(n, k) transforms an string of k symbols in a codeword x,

x ∈ C, of n symbols with k independent symbols and n− k redundant symbols, and

in consequence it achieves an information rate, R, of k/n.

This parameterization allows to study two related concepts: the capacity of a

channel, that is, the maximum information rate that can be transmitted for a fixed ξ

and, for a specific error correcting code C, the maximum value ξmax, i.e. the noisiest

channel for which a sender can reliably transmit information with C. The relation
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Figure 3.1: Asymmetric Slepian-Wolf coding scheme: source coding with

side information at the decoder.

between both answers gives an idea of the efficiency of the code, or in other words,

how close is the coding rate of a code to the optimal value.

We can measure, analogously, the efficiency f of an information reconciliation

protocol as the additional information required for compressing a source, i.e. the

relation between the length of the messages exchanged to reconcile the strings, |M|,

and the theoretical minimum message length.

3.1.1 Slepian-Wolf Coding and Source Coding with Side Informa-

tion at the Decoder

The problem of information reconciliation in secret key agreement is formally equi-

valent to the problem of source coding with side information at the decoder studied

by Slepian and Wolf in 1973 [45], also known as asymmetric Slepian-Wolf coding.

In their original work, the authors analyze the problem of correlated sources, and

they determine R ≥ H(X, Y) the minimum information required to encode two cor-

related information sequences, represented by two discrete random variables X and

Y respectively, even if both sequences are encoded separately.

This contribution can be also used to determine how should X (the source) be

encoded in order to allow a decoder with access to side information Y to recover the

information in X with high probability. The minimum message length is given by the

conditional entropy H(X|Y), and thus given the decoder access to side information Y

no encoding of X shorter than H(X|Y) allows for reliable decoding. This asymmetric
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Slepian-Wolf coding scheme is depicted in Figure 3.1.

Using this approach, the efficiency of an information reconciliation procedure is

given by:

f =
|M|

H(X|Y)
≥ 1 (3.2)

where f = 1 stands, then, for perfect reconciliation.

3.1.2 Syndrome Source Coding

The relation between Slepian-Wolf coding and channel coding was pointed out by

Aaron D. Wyner a year later in Ref. [46]. Based on Wyner’s idea powerful error

correcting techniques can be then used for the information reconciliation problem.

For instance, LDPC codes have been widely considered in the literature for the coding

problem of correlated sources [47, 48].

In channel coding, let C(n, k) be a linear code and let H be its corresponding

parity-check matrix. The code C maps each k-length word into a n-length codeword

x ∈ C, such that Hxt = 0. A codeword is then transmitted through a communication

channel which introduces errors in the received word y. Errors can be denoted by

other n-length vector e, such that y = x⊕ e. A decoding algorithm tries to find the

correct x using the syndrome of y, z = Hyt. This syndrome only depends on the

error vector, since:

z = Hyt = H(xt + et) = Hxt + Het = Het (3.3)

It is assumed that there exists a decoding function g(·) that attempts to find the

error vector e with the least weight, such that e can be decoded from its syndrome Het

with high probability, a technique called syndrome decoding (see decoding techniques

in Section 3.2.2).

As introduced in Section 2.4.1, two vectors yield the same syndrome when they are

elements of the same coset, and therefore syndromes and cosets are closely related.
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3.1 Introduction to Information Reconciliation

Figure 3.2: Coset and coset leader.

The coset leader is the lowest weight vector in a coset, and thus this is the error vector

decoded. An example of cosets and coset leader is shown in Figure 3.2. A similar

depiction was already proposed in Ref. [49]. Codewords in the original code C are

depicted in the figure with a solid point, while codewords in the coset y + C are

depicted by a dotted circle.

This decoding technique can be also applied to the asymmetric Slepian-Wolf cod-

ing problem as follows. In information reconciliation, Y is a noisy version of X (or

viceversa), and both encoder and decoder have access to a noiseless channel. The

syndrome of x, an instance of X, z = Hxt, with length per symbol 1− R, indicates in

which of the cosets of C is x a codeword. The decoder tries to recover x from z given

the side information y, an instance of Y, ant it can be done since:

z⊕ Hyt = H(xt ⊕ yt) = Het (3.4)

Let Rs be the rate of information disclosed by the source, and let Rc be the coding

rate of a channel code C(n, k) (e.g. an LDPC code) used for reconciliation. Both
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information rates are related by m = n− k, the redundancy of C, equivalent to the

redundancy disclosed by the source. And thus:

Rs =
m

n
= 1−

k

n
= 1− Rc (3.5)

The efficiency of an information reconciliation method based in syndrome source

coding is then given by:

fC =
1− Rc

H(X|Y)
(3.6)

In the special, but also important, case of the binary symmetric channel with

crossover probability ǫ, the efficiency can be written as:

fBSC(ǫ) =
1− Rc

h(ǫ)
(3.7)

where h(ǫ) is the binary Shannon entropy as defined in Eq. (2.2).

3.2 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes were introduced by Robert G. Gallager in the

early 1960s [29,30], however this work was generally neglected for years —with very

few exceptions, as in Ref. [44]—. These codes were rediscovered thirty years later by

MacKay and Neal in Refs. [50, 51], where the authors show that the performance of

regular LDPC codes is almost as close to the Shannon limit as the Turbo codes one.

But it was later when these codes become of interest since it was demonstrated that

these codes are capacity achieving for some communication channels [31], and it was

also introduced different techniques for designing good ensembles of irregular LDPC

codes [52–54].

An LDPC code is a linear code defined in terms of a very sparse (low-density)

parity-check matrix H, i.e. there are few non zero entries in the parity-check matrix.

This parity-check matrix is typically depicted by a bipartite graph, or Tanner graph
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3.2 Low-Density Parity-Check Codes

(see Figure 2.4). Nodes in the graph are then divided between symbol and check

nodes, and denoted by si and cj, respectively.

An LDPC code is said to be (j, k)-regular, or regular, when each symbol and check

node have a constant number of incident edges (degree), j and k respectively, i.e.

d(si) = d(sj) for all i 6= j and d(ck) = d(cl) for all k 6= l. Therefore, in the parity-

check matrix there is a constant number of ones in each row and column. Otherwise,

the code is said to be irregular when there are symbols or check nodes with different

degrees. It should be noted that in this work we only use irregular codes since they

improve the performance of regular ones [55].

An ensemble of irregular LDPC codes —i.e. a family of codes— are usually de-

fined by two generating polynomials, λ(x) and ρ(x). The coefficients of each term, λi

and ρj, define the fraction of edges in the code graph connected to a i-degree symbol

node and j-degree check node, respectively. The degree of each term, i and j, define

the number of incident edges to a node, symbol and check node, respectively. These

polynomials are defined as follow:

λ(x) =
dmax

s

∑
i=2

λix
i−1 ; ρ(x) =

dmax
c

∑
j=2

ρjx
j−1 (3.8)

where dmax
s and dmax

c are the highest degree for symbol and check nodes, respectively.

Note that the sum of these coefficients must be one, thus ∑i λi = 1 and ∑j ρj = 1.

The information rate, as defined in Eq. (2.9), of a family of LDPC codes can be

then calculated from the edge distribution provided by both generating polynomials

as follow:

R =
n−m

n
= 1−

m

n
= 1−

∑
dmax

c
j=2 ρj/j

∑
dmax

s
i=2 λi/i

(3.9)

The fraction of edges connected to a symbol or check node can be also translated

to the probability of finding an i-degree symbol node or a j-degree check node in the

graph, λ∗i and ρ∗j , respectively.
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λ∗i =
λi/i

∑
dmax

s
i=2 λi/i

; ρ∗j =
ρj/j

∑
dmax

c
j=2 ρj/j

(3.10)

In everything discussed here, it is assumed that we work with binary LDPC codes,

even when we omit the term binary for convenience. However, non-binary LDPC

codes can also be used in this context, and they were already proposed for informa-

tion reconciliation in QKD [56]. A brief introduction to the problem of information

reconciliation in QKD can be found in Ref. [57].

3.2.1 Design of Irregular LDPC Codes

The asymptotic behavior of a family of LDPC codes can be analyzed using, for ins-

tance, a density evolution algorithm [31]. Two versions of this algorithm, Gaussian

approximation and discretized density evolution, were originally applied to design

good families of LDPC codes in Refs. [53] and [54], respectively. Differential evolution

and density evolution can be used together to find good edge distributions [58].

The problem of finding families of good LDPC codes for the binary symmetric

channel is beyond the scope of this work. It was already discussed by Elkouss et al.

in Ref. [26] and it is also within the scope of his Ph.D. dissertation [37].

3.2.2 Efficient Decoding Techniques for LDPC Codes

Let C(n, k) be a linear code to be used in a data communication, and H its corres-

ponding parity-check matrix. Let x be the transmitted codeword, and y the received

word. The goal of any decoder is to find the most likely codeword x̂ that was sent,

such that x̂ = x with high probability. On the binary symmetric channel, this problem

is equivalent to finding the minimum-weight vector e that satisfies H(yt ⊕ et) = 0,

such that x̂ = y⊕ e, i.e. x̂ is the codeword with the smallest Hamming distance to y.

A decoder that maximizes the probability that x̂ was sent given that y was received

is called maximum-likelihood decoder, and it is known that maximum-likelihood de-
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coding for the BSC is an NP-complete problem when using a general code where the

decoder has to consider all the 2k possible vectors [59].

Fortunately, there are some decoding algorithms that perform quite well with

sparse graphs, such as LDPC codes. They are the message-passing algorithms (MPA)

already introduced by Gallager [29, 30]. These algorithms are so called MPA because

they operate by exchanging messages, iteratively, along the edges of a bipartite graph,

i.e. messages are exchanged between symbol and check nodes. A family of well-

analyzed iterative message-passing decoders are those based on belief propagation.

In a belief propagation based algorithm, the messages passed along the edges are

probabilities, or beliefs. An LDPC code is efficiently decoded by using the sum-

product algorithm, the better known implementation of belief propagation.

Belief propagation is in general less powerful than maximum-likelihood decod-

ing under general assumptions. However, belief propagation performs equally under

certain assumptions, such as: (1) there are no cycles in the graph, and (2) only extrin-

sic information is passed along the paths —i.e. a message sent along an edge may

not depend on the message previously received along this edge—. As it is shown

below, both assumptions are taken into account when constructing an LDPC code.

Cycles, for instance, cannot be avoided in a finite graph, but we can make these as

large as possible. Furthermore, the graph is constructed avoiding special topologies,

such as stopping and trapping sets [60,61], thus maximizing the exchange of extrinsic

information.

Other well-known decoding algorithms, such as mim-sum and bit flipping based

algorithms, are not considered in this thesis even though they may be much more

interesting for an efficient hardware implementation of LDPC codes.

Sum-Product Algorithm

A comprehensive description of the sum-product algorithm is provided by MacKay in

Ref. [41]. The algorithm consists of three phases, an initialization phase and two other
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Figure 3.3: Observed values and messages exchanged between symbol and

check nodes in the sum-product algorithm.

phases that run iteratively to compute messages from check nodes to symbol nodes

(horizontal step), and messages from symbol nodes to check nodes (vertical step).

Initialization from the observed values, and messages computed in both horizontal

and vertical steps are depicted in Figure 3.3.

Initialization.— Let p0
i be the a priori probability that the i-th symbol si is 0,

p0
i = Pr(si = 0), and let p1

i be the a priori probability that the i-th symbol si is 1,

p1
i = Pr(si = 1) = 1− p0

i . Assuming a communication over the BSC with crossover

probability ǫ, if for instance the i-th symbol at the receiver is si = 0, p0
i and p1

i are

initialized to 1− ǫ and ǫ respectively.

For every edge in the graph (i, j), such that Hj,i = 1, the algorithm also initializes

the first message from symbols to check nodes as follows:

q0
i→j = p0

i (3.11)

q1
i→j = p1

i (3.12)
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Horizontal step.— In this step the algorithm run through the check nodes and it

computes the corresponding messages rj→i from check to symbol nodes. For each

j-th check node it computes:

r0
j→i = ∑

si′ :i
′∈N (j)\{i}

Pr(cj|si = 0, si′ : i′ ∈ N (j)\{i}) ∏
i′∈N (j)\{i}

q
si′

i→j (3.13)

r1
j→i = ∑

si′ :i
′∈N (j)\{i}

Pr(cj|si = 1, si′ : i′ ∈ N (j)\{i}) ∏
i′∈N (j)\{i}

q
si′

i→j (3.14)

where the conditional probability in the sum, Pr(cj|si = 0, si′ : i′ ∈ N (j)\{i}) and

Pr(cj|si = 1, si′ : i′ ∈ N (j)\{i}), is either zero or one, depending on whether the

observed check node cj verifies the corresponding parity-check equation.

Vertical step.— In this step the algorithm run through the symbol nodes and it

computes the corresponding messages qi→j from symbol to check nodes. For each

i-th symbol node it computes the corresponding d(si) messages:

q0
i→j = αj,i p0

i ∏
j′∈M(i)\{j}

r0
j′→i (3.15)

q1
i→j = αj,i p1

i ∏
j′∈M(i)\{j}

r1
j′→i (3.16)

where αj,i is chosen such that q0
j→i + q1

j→i = 1.

Finally, the posterior probabilities for each symbol are calculated as follow:

q0
i = αi p0

i ∏
j∈M(i)

r0
j→i (3.17)

q1
i = αi p1

i ∏
j∈M(i)

r1
j→i (3.18)

where αi is chosen such that q0
i + q1

i = 1. At this point, each symbol value si is then

updated such that si = 0 if q0
i > 1/2, otherwise si = 1.
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The algorithm stops if every check node is satisfied, and thus Hst = 0. The algo-

rithm aborts if it reaches a maximum number of iterations. Otherwise, the algorithm

continues going back to the horizontal step.

Conventionally, messages between symbol and check nodes are computed accord-

ing to the order described above. Thus, at each iteration, first, all symbol nodes

compute and send messages to their neighbors, and secondly it is performed the op-

posite process, in which all check nodes send back their corresponding messages to

the symbol nodes. This conventional scheme is called flooding schedule.

It was demonstrated that this schedule is not efficient and can be outperformed by

other approaches [62,63]. A simple alternative is the serial schedule, in which extrinsic

information tends to spread twice as fast. In this new schedule, only check nodes are

processed sequentially, and at each check node both messages from symbols to check

nodes and messages from checks to symbol nodes are computed and sent along its

incident edges.

Sum-Product Algorithm (Flooding Schedule)

The previous description of the sum-product algorithm can be efficiently imple-

mented using likelihoods, or even log-likelihoods, instead of probabilities. Then,

given a binary variable x, it can be represented by a single value using the log-

likelihood ratio:

L(x) = log
Pr(x = 0)

Pr(x = 1)
(3.19)

where log is the logarithm to base e.

To translate from log-likelihood ratios back to probabilities we use:

Pr(x = 1) =
Pr(x = 1)

Pr(x = 0) + Pr(x = 1)

=
Pr(x = 1)/ Pr(x = 0)

1 + Pr(x = 1)/ Pr(x = 0)
=

e−L(x)

1 + e−L(x)
(3.20)
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and

Pr(x = 0) =
Pr(x = 0)

Pr(x = 0) + Pr(x = 1)

=
Pr(x = 0)/ Pr(x = 1)

1 + Pr(x = 0)/ Pr(x = 1)
=

eL(x)

1 + eL(x)
(3.21)

Another benefit of working with logarithms is that the product of probabilities, as

defined in Eqs. (3.13) to (3.18), results in a sum of log-likelihood ratios.

Let ℓ be the iteration number, such that q
(ℓ)
i→j stands for the message send from

the i-th symbol to the j-th check node in the ℓ-th iteration, and r
(ℓ)
j→i stands for the

message send from the j-th check to the i-th symbol node in the ℓ-th iteration. Let

pi = L(si) be the log-likelihood ration of the i-th observed value si. The sum-product

algorithm can be rewritten as follows.

q
(ℓ)
i→j =







pi, if ℓ = 0

pi + ∑
j′∈M(i)\{j}

r
(ℓ)
j′→i, if ℓ > 0

(3.22)

r
(ℓ)
j→i = γ−1



 ∑
i′∈N (j)\{i}

γ
(

q
(ℓ−1)
i′→j

)



 (3.23)

where γ(·) and γ−1(·) are defined as follow [52]:

γ(x) =

(

sign(x),− log tanh
|x|

2

)

(3.24)

γ−1(sign, x) = (−1)sign · − log tanh
x

2
(3.25)

and

sign(x) =







0, x > 0

1, x < 0

ζ, x = 0

(3.26)

37



Chapter 3 Information Reconciliation and Low-Density Parity-Check Codes

where ζ is 0 or 1 with probability 1/2.

A review of the state of the art in the design of LDPC decoders can be found

in Ref. [64]. The authors analyze the challenges in the hardware implementation of

several decoding architectures (with emphasis on parallel architectures) for differ-

ent ensembles of LDPC codes. Different performance metrics are also discussed in

relation to the design of digital integrated circuits.

Sum-Product Algorithm (Syndrome Source Coding)

Note that in the channel coding setting, the belief propagation algorithm is designed

to output a codeword with syndrome 0, whereas in the source coding setting, this

algorithm needs to be modified so that it outputs a vector satisfying a given syndrome

[65].

q
(ℓ)
i→j =







pi, if ℓ = 0

pi + ∑
j′∈M(i)\{j}

r
(ℓ)
j′→i, if ℓ > 0

(3.27)

r
(ℓ)
j→i = (−1)cj

︸ ︷︷ ︸

syndrome

γ−1



 ∑
i′∈N (j)\{i}

γ
(

q
(ℓ−1)
i′→j

)



 (3.28)

where (c1, c2, ..., cm) is the syndrome transmitted by the source, and cj is the value of

this syndrome corresponding to the parity-check equation defined by the j-th check

node.

3.3 Constructing Low-Density Parity-Check Codes

Belief propagation based algorithms provide optimum decoding over cycle-free Tan-

ner graphs [31]. However, any finite length graph has necessarily cycles. It was shown

that it is important to make those cycles as large as possible. It has been also shown

that a large girth improves the performance of LDPC codes using iterative decoding
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as it enforces a reasonable minimum distance [66]. However, note that a large girth

does not automatically imply a a large minimum distance.

The progressive edge-growth (PEG) algorithm is an efficient method for construct-

ing Tanner graphs with large girth [66,67], in most cases with better performance than

randomly constructed codes. PEG algorithm’s interest lies in its simplicity, and its

flexibility when constructing irregular codes from a complex symbol node degree

distribution.

The performance of these codes can be also improved, for instance, analyzing each

additional cycle. Recent works have been focused on the study of those cycles, since

it has been shown that it is possible to improve the performance of LDPC codes, for

instance avoiding small stopping sets and trapping sets (near codewords) [60, 61].

New definitions have also been introduced, such as the extrinsic message degree

(EMD) or the approximate cycle EMD (ACE), which are two common measures used

to calculate the connectivity of symbol nodes [68–70].

3.3.1 Progressive Edge-Growth Algorithm

A PEG-based algorithm consists of two basic procedures: a local graph expansion

and a check node selection procedure. Both procedures are executed sequentially in

order to construct a Tanner graph connecting symbol and check nodes in an edge-by-

edge manner. In the first procedure it is performed the expansion of the local graph

from a symbol node, this expansion is used to detect and avoid short cycles when

adding a new edge to the graph. The result is that check nodes that will produce a

cycle are pruned, or if it is not possible to avoid a cycle, there only remains a set of

candidate check nodes producing the largest cycle. The selection procedure is used to

reduce this list of candidate nodes according to the current graph setting. In typical

PEG-based algorithms, this procedure attempts to balance the degree of any check

node selecting those candidates with the lowest check node degree.

In the original PEG algorithm [66,67], a code is constructed according to a symbol
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node degree sequence. This sequence is previously calculated with the number of

symbol nodes n and the edge degree distribution established by λ(x) (see Eq. (3.8)

and Eq. (3.10)). Note that the original proposal does not take into account the second

polynomial, ρ(x), for the check node degree distribution. The algorithm proposed in

this thesis follows both degree distributions during the code construction procedures,

changing the edge selection criterion, thus obtaining a better approach to codes with

an irregular degree distribution.

3.3.2 Free Check-Node Degree Criterion

The edge selection procedure used in this proposal differs from the selection proce-

dure proposed in the original PEG algorithm. The graph is analyzed to avoid local

short cycles, however check nodes are not chosen according to its number of as-

signed edges, dk(ci), i.e. its current (or partial) degree. Instead of this, the check node

with the highest difference between its partial and final-defined degree is chosen,

f (ci) = d(ci)− dk(ci), i.e. the difference between the number of currently assigned

edges and the total number of edges to be assigned. The lowest check node degree

procedure is replaced by a highest free check node degree (FCD) procedure (see Fi-

gure 3.4). The FCD concept, comes from the concept of sockets previously described

in Refs. [31, 71].

Figure 3.4 shows three Tanner graphs illustrating some characteristics of the algo-

rithm. In (a) the zig-zag pattern used for 2-degree symbol nodes is shown. Subfigures

(b) and (c) show check nodes with different degrees, d(ci) and d(cj), and different

number of incident edges (partially assigned), dk(ci) = 1 and dk(cj) = 2. The first

check node, ci, is selected if a lowest check node degree criterion is used, while the

second node, cj, is selected if the criterion used is the FCD [72].

We introduce the concept of compliance of a constructed code as the distance bet-

ween the distribution of nodes (symbol or check nodes) in the code and the pre-

established node degree distribution. Let ρj be the pre-established probability distri-
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Figure 3.4: Progressive edge-growth criteria for the selection of check

nodes and zig-zag pattern.

bution for a degree j check node, and ρ∗j the actual probability of a degree j check

node in the constructed graph, we calculate the ρ-compliance of a code as follows:

η =
dmax

c

∑
j=2

∣
∣
∣ρj − ρ∗j

∣
∣
∣ (3.29)

where ρ∗(x) =
dmax

c

∑
j=2

ρ∗j xj−1.

3.3.3 Proposed Algorithm

A modified PEG algorithm is described in Algorithm 1.

The same notation as in Ref. [66] is used, where d(sj) is the sj symbol node degree

—i.e. the number of incident edges, it corresponds to the cardinality of the ensemble

Esj
after the code construction—, d(ci) is the ci check node degree, f (ci) is the number

of edges that can be added to the check node cj under the current graph setting, such

that dk(ci) = f (ci)− d(ci), Esj
is the ensemble of edges connected to the symbol node

sj, Ek
sj

the edge added in the step k of the progressive construction, and N l
sj

is the
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ensemble of nodes reached after the graph expansion from the symbol node sj up to

depth l.

Algorithm 1 Improved Progressive Edge-Growth

Require: d(si) ≤ d(sj) ∀i < j and f (ci) = d(ci) ∀i

for j = 1 to n do

for k = 1 to d(sj) do

if k = 1 then

if d(sj) = 2 then

E1
sj
← (ci, sj), where E1

sj
is the first edge incident to sj and ci is a check

node such that it has the lowest check-node degree under the current graph

setting Es1
∪ Es2 ∪ · · · ∪ Esj−1

.

else

E1
sj
← (ci, sj), where E1

sj
is the first edge incident to sj and ci is a check

node such that it has the highest free check-node degree.

end if

else

Expand a subgraph from symbol node sj up to depth l under the current

graph setting, such that N l
sj
= N l+1

sj
, or N

l
sj
6= ∅ but N

l+1
sj

= ∅.

Ek
sj
← (ci, sj), where Ek

sj
is the k-th edge incident to sj and ci is a check node

picked from the set N
l
sj

having the highest free check-node degree.

end if

f (ci) = f (ci)− 1

end for

end for

A zig-zag construction for 2-degree symbol nodes (see Figure 3.4) is forced by

using an special criterion when adding the first edge to a symbol node. In this

particular selection, a list of eligible check nodes is limited to those check nodes

already connected under the current graph setting, Es′ = Es1
∪ Es2 ∪ · · · ∪ Esj−1

, i.e. to
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Table 3.1: ρ-compliance of LDPC codes constructed using four different

PEG-based algorithms.

Relaxed edge-selection (1) (2) (3) (4)

No 1.938722 0.050631 0.057456 0.050050

Yes – 0.001623 0.001634 0.000510

the list of check nodes that have been chosen at least once from the first to j-th step.

This construction is used to avoid cycles with 2-degree symbol nodes, thus obtaining

a good performance in the error floor region as shown in the simulation results (see

Section 3.3.4 below).

Relaxed edge selection

The proposed PEG algorithm can be modified to work with a relaxed edge selection.

In this case, if there are not check nodes with free edges in the final ensemble of

candidate check nodes, N
l
sj

, check nodes with free edges are searched in the previous

candidate ensemble, N
l−1
sj

. This procedure improves the ρ-compliance, η, with the

target check node degree distribution, ρ(x), at the expense of the current local cycle

length (see Table 3.1).

3.3.4 Simulation Results

Simulations results have been computed to compare four different PEG-based cons-

truction methods: (1) the original PEG algorithm as proposed in Refs. [66,67]; (2) the

modified PEG algorithm proposed by Richter in Ref. [71]; (3) the modified PEG algo-

rithm proposed here; and (4) a mixed version, where the lowest check node degree

criterion is used to connect the first edge to a symbol node (not only to 2-degree sym-

bol nodes as proposed here), and the FCD criterion is used for the remaining edges.

All constructed codes have a codeword of 105 bits length and rate one half, R = 0.5.
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Figure 3.5: Performance over the BSC with crossover probability ǫ of four

LDPC codes constructed using different PEG-based algorithms.

In Table 3.1 the ρ-compliance, calculated as defined in Eq. (3.29), is compared for

two edge selection criteria: the relaxed edge selection and the selection criterion pro-

posed in Algorithm 1. We have constructed codes ad-hoc for these simulations. The

values shown in this table were calculated for those codes. Results show that the re-

laxed edge selection criterion allows a better approximation of the degree distribution

in ρ(x).

Performance has been computed under iterative decoding by using the sum-

product algorithm with flooding schedule. The maximum number of iterations for

the decoder was set to 2000.

Figure 3.5 shows the performance of these codes over the BSC. Frame error rate

as a function of the crossover probability, ǫ, is analyzed for four construction me-

thods. Codes have been constructed using the optimized generating polynomials

from Ref. [26]. Since the ρ(x) distribution is more complex in this ensemble of codes,

and thus it is possible to better appreciate the differences among the various algo-
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rithms used for constructing the codes. The error floor is improved using the zig-zag

construction for 2-degree symbol nodes. On the other hand, within a given graph

setting, when the first check node connected to a symbol node rule is used, there is

no relevant improvement.
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Chapter 4

Rate-Adaptive Reconciliation with

Low-Density Parity-Check Codes

Throughout this chapter we analyze different techniques used to adapt the informa-

tion rate of a linear code, and we emphasize how these techniques behave when using

LDPC codes. To this end, the chapter is organized as follows. In Section 4.1 we show

some figures of merit to introduce the interest of rate-compatible codes for the in-

formation reconciliation problem. Next, in Section 4.2 we introduce some techniques

commonly used to adapt the information rate of LDPC codes. In Section 4.3 we

propose a rate-adaptive protocol specifically designed for reconciliation using LDPC

codes. Finally, in Section 4.4 we show some simulation results for the rate-adaptive

protocol proposed here.

4.1 Introduction

When using an LDPC code the redundancy is determined by the information rate

of the code (see Eq. (3.9)). Once the coding rate has been established, the efficiency

for reconciliation, as defined in Eq. (3.7), is then a function that depends on a single

parameter, the error rate ǫ. This efficiency decreases in the range ǫ ∈ [0, ǫmax], where
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Figure 4.1: Reconciliation efficiency for the error rate ǫ of Cascade and

LDPC codes without using any rate-adaptive technique.

ǫmax is the maximum error rate that can be reconciled using the selected code. For

error rate values far from this ǫmax the efficiency is also far from its optimal value

since the redundancy used is excessive.

We can improve the reconciliation efficiency using a set of LDPC codes instead of

just one. We choose then the code with the best efficiency for every value of ǫ, but

we cannot avoid a characteristic saw behavior: the efficiency is good for ǫ values just

below the ǫmax of every code, and it degrades till the next code is used. This forces

the use of many codes in order to cover a broad range of ǫ with good efficiency, not

a very practical proposition, for instance when working in time-varying channels or

simply considering a finite length analysis.

This behavior of the reconciliation efficiency using LDPC codes as a function of

the characteristic parameter, here the error rate ǫ, is shown in Figure 4.1. The fi-

gure shows the reconciliation efficiency using LDPC codes of 2× 105 bits length as

a function of the channel error rate, ǫ. Since the redundancy is fixed for a ǫ range,
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it is excessive and far from optimal for good channels, i.e. low values of ǫ; as the

light grey line shows for a reconciliation method based in a single LDPC code. The

dashed curve marked as LDPC shows a set of codes where the best efficiency code is

chosen for every value of ǫ. When ǫ is just below or at the working point1, no more

redundancy than necessary is used, thereby producing high efficiency codes. As we

move away from this point using the same code, the efficiency moves further from

the optimal value. In the figure, a solid line depicts the efficiency of Cascade [5].

A rate-adaptive coding is then considered crucial in this context —i.e. secret-key

agreement—, since the efficiency during the information reconciliation process is a

determining factor for the final secret-key length.

4.2 Rate-Adaptive LDPC Coding

An error correcting code is considered to be rateless or rate-compatible when the infor-

mation rate of the code can be dynamically adapted according to the communication

requirements. LDPC codes are not rate-compatible in nature. However, there exist

some techniques, such as puncturing or shortening, that can be used to adapt the

information rate of these codes. A rate-adapting procedure is usually known as rate

modulation. Construction of rate-compatible LDPC codes was originally analyzed in

Refs. [73, 74].

4.2.1 Puncturing

A well-known technique commonly used to modulate the information rate of a linear

code is puncturing. It modulates the rate of a previously constructed code, C(n, k), by

deleting a set of p symbols from the codewords, p < n, converting it into a C(n− p, k)

1We refer to working point as the maximum value of ǫ for which the code is able to reconcile an

string with high probability, i.e. assuming a low frame error rate (FER), typically an appropriate value

of FER is 10−3.
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Figure 4.2: Example of puncturing applied to a linear code represented by

its Tanner graph.

code. The coding rate is then increased to:

R =
k

n− p
=

R0

1− π
(4.1)

where R0 = k/n is the rate of the original code (mother code) and π = p/n is the

fraction of punctured symbols, π < 1.

Figure 4.2 shows an example of puncturing applied to a linear code. In the corres-

ponding Tanner graph, one symbol is deleted from the word and a C(8, 4) code with

rate one half R0 = 1/2, is converted to a C(7, 4) code, increasing its rate to R = 4/7.

The value of the punctured symbol is then considered unknown, and this uncertainty

is translated to its neighboring set (check nodes).

Puncturing was originally studied for its application with LDPC codes in Ref. [75].

Later, it was proved that the performance of punctured LDPC codes is as good as

the performance of ordinary ones —i.e. punctured LDPC codes are also capacity

achieving—, existing a puncturing threshold for every family of these codes [76, 77].

Optimized puncturing distributions were also analyzed using the density evolution

for the asymptotic case [78, 79]. Furthermore, the behavior of finite length LDPC
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codes in the waterfall region has been also studied when puncturing over the binary

erasure channel [80]. A nice survey about puncturing and rate-adaptive LDPC codes

can be found in Ref. [81]. In this regard, it should also be noted that other strategies,

not discussed here, can be used to improve the performance of rate-compatible LDPC

codes. For instance, the design of good irregular codes suitable for high puncturing

rates2 was analyzed in Refs. [82–84].

The rate of a code can be adapted in a syndrome source coding scheme as follows.

Let C(n, k) be a code that can be used to correct noise up to ǫmax for some channel

family, and let x and y be two m-length strings, with m = n− p, correlated as if they

were the input and output of a channel characterized by ǫ < ǫmax —i.e. x and y are

two instances of X and Y, respectively—. The encoder sends the syndrome in C of

a word x̂ constructed by embedding x in a string of length n and filling the other p

positions with random bits. If the new coding rate, R(p) = R0/(1− p) is adapted to

ǫ the decoder should recover x from x̂ with high probability.

We can think of a reconciliation protocol based only in punctured codes: the

parties would agree on an acceptable frame error rate (FER) and, depending on their

estimation of the error rate, they would choose the optimal value of p. If we consider

the behavior of FER as a function of ǫ for a set of fixed p values, as depicted in

Figure 4.3, this procedure can be regarded as moving along the horizontal axis from

one code to the next. However, this way of proceeding has the shortcoming that if

the channel is time varying —i.e. ǫ varies over time—, the length of x and y also

varies to accommodate the different values of p needed to adapt the coding rate. We

could think of scenarios where m ≫ n and two instances of X and Y can be divided

in packets of length n− p but this clearly does not apply to many situations.

Figure 4.3 shows the frame error rate (FER) over the binary symmetric channel

(BSC) with crossover probability ǫ for a binary LDPC code of 2× 103 bits length and

rate one half, R0 = 1/2. Several curves have been simulated for different proportions

2Efficiently-encodable rate-compatible (E2RC) codes.
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Figure 4.3: Performance over the BSC with crossover probability ǫ for a

short-length LDPC code and different proportion of punctured symbols.

of punctured symbols. Due to the short code length, the distribution of punctured

symbols has been intentionally chosen according to an optimized pattern as proposed

in Ref. [85].

4.2.2 Intentional Puncturing

Specially when working with short length codes, but also when working with high

puncturing rates, the ensemble of punctured symbol nodes determines the decoding

performance. In this regard, puncturing has been analyzed for the finite length case,

and several algorithms have been proposed for finding good puncturing patterns

that can be efficiently applied in finite length LDPC codes [85–89]. In Ref. [85] the

authors introduce the concept of intentional puncturing as alternative to the random

puncturing previously used. In intentional puncturing the ensemble of symbol nodes

to puncture is chosen following a list of puncturable nodes —previously computed—
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4.2 Rate-Adaptive LDPC Coding

instead of a random fashion.

A well-known method for determining maximum puncturing patterns in LDPC

codes is proposed in Ref. [85]. These puncturing patterns have to be generated prior

to the coding procedure, and it can be a relatively convoluted procedure for long

codes since it requires to process the entire parity-check matrix. The authors later

analyze how the ensemble of punctured nodes affects the decoding, and they pro-

pose a particular schedule for decoding that improves the decoding performance of

layered-based LDPC codes [90]. Basically, in this intentional decoding the algorithm

tries to compute first those messages from non-punctured symbol nodes in order to

recover punctured ones, as it can be done when using for instance a serial schedule

scheme for decoding as described in Section 3.2.

Puncturing Short-Length LDPC Codes

In this work, we focus exclusively on those intentional puncturing methods that mi-

nimize the impact of puncturing in the decoding of short length codes. We describe

here a new finite length method for intentional puncturing based on the concept of

next neighboring set introduced in Section 2.4. Contrary to the method proposed in

Ref. [85], this algorithm focused on finding good puncturing patterns for short-length

LDPC codes and it can be efficiently applied analyzing only the 2-depth local graph

of each punctured node.

In Ref. [85] the concept of one-step recoverable (1-SR) is defined for a symbol node

when there is at least one survived node within the set of adjacent check nodes, and

therefore the symbol node can be recovered in one step. A check node is considered

survived if there are no punctured nodes within the set of adjacent symbol nodes. We

introduce here the concept of one-step untainted, based on a similar definition of 1-SR,

to propose a simple method that chooses symbols such that all the adjacent check

nodes are survived nodes.

Let N 2(k) be the next neighboring set of a symbol node sk as defined in Eq. (2.31).
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Figure 4.4: Next-neighboring set of a punctured symbol node.

Definition 14. A symbol node sk is said to be one-step untainted (1-SU) if there are no

punctured symbols within its next neighboring set N 2(k).

Figure 4.4 shows an example. In this example, x5 is a symbol node selected to

be punctured, and the set {s4, s6, s7, s9, s11, s12, s14, s15} is the next neighboring set of

symbol nodes that will be excluded in following selections of the proposed method.

The neighboring set is computed from the set of check nodes adjacent to the selected

symbol, {c5, c6} in the current example.

Proposed Algorithm

Let X∞ be a set of symbol nodes that are not affected by the current selection of

punctured symbol nodes, i.e. X∞ is the ensemble including every 1-SU symbol node.

And let Z∞ be the set containing every check node which is not adjacent to any

punctured symbol. At the beginning, when there are no punctured symbols, both

sets X∞ and Z∞ consist of every symbol and check node, respectively. Let pmax be

the number of symbols to be punctured, the proposed intentional puncturing can be

then described as in Algorithm 2.
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Algorithm 2 Intentional Puncturing

{Initialization}

V = ∅

X∞ = {1, ..., n}

Z∞ = {1, ..., m}

p = 1

while p ≤ pmax and X∞ 6= ∅ do

{Step 1.– Compute 1-SU under the current pattern}

Make the next neighboring set G(k) under the current puncturing pattern, a

subset of N 2(k), such that G(k) = {i : i ∈ N (j), ∀j ∈ M(k) ∩ Z∞}, for each

k ∈ X∞. Similarly, there should be G(k) = N 2(k) ∩ X∞.

{Step 2.– Look for candidates}

Make the set of candidates Ω, a subset of X∞, such that i ∈ Ω if |G(i)| ≤ |G(k)|

for all k ∈ X∞.

{Step 3.– Selection for puncturing}

Pick a symbol node si, such that i ∈ Ω. Pick one randomly if there exist more

than one symbol in Ω.

{Step 4.– Updating sets}

V = V ∪ {i}

X∞ = X∞\{i}

X∞ = X∞\{k} for all k ∈ G(i), k 6= i

Z∞ = Z∞\M(i)

p = p + 1

end while
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Table 4.1: Highest and lowest upper bound for maximum puncturing.

Rate R = 0.3 R = 0.4 R = 0.5 R = 0.6

p+max
a 4740 4135 3551 2978

p−min 4642 4032 3444 2877

p+max
b 2685 2373 1986 1643

p−min 2608 2299 1916 1585

aAlgorithm proposed in Ref. [85].
bAlgorithm proposed here.

The algorithm concludes when it chooses pmax symbol nodes or there are no more

selectable symbols to be punctured, i.e. X∞ = ∅. Table 4.1 shows the highest and

lowest upper bound of pmax, p+max and p−max respectively, observed over all simula-

tions. This algorithm allows for a smaller number of punctured symbols, compared

to the proposed in Ref. [85], which also implies a reduction in the achievable rate

through puncturing. However, it is shown below that the performance of intentional

punctured codes with the proposed algorithm is better than the one in Ref. [85].

At the end, the algorithm returns the set V consisting of those symbol nodes

selected during the third step.

Simplified Version. Lowest Check-Node Degree Criterion

Notice that, whenever a code is constructed with an almost regular fraction of edges

per check node —as occurs in the original PEG algorithm—, the first and second

step can be simplified. Instead of looking for a symbol node with the smallest next

neighboring set under the current puncturing pattern, a symbol node si with the

lowest check node degree M(i) can be used. This simplified version is described in

Algorithm 3.
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Algorithm 3 Intentional Puncturing (Simplified Version)

{Initialization}

V = ∅

X∞ = {1, ..., n}

Z∞ = {1, ..., m}

p = 1

while p ≤ pmax and X∞ 6= ∅ do

{Step 1.– Look for candidates}

Make the set of candidates Ω, a subset of X∞, such that i ∈ Ω if |M(i) ∩ Z∞| ≤

|M(k) ∩ Z∞| for all k ∈ X∞.

{Step 2.– Selection for puncturing}

Pick a symbol node si, such that i ∈ Ω. Pick one randomly if there exist more

than one symbol in Ω.

{Step 3.– Updating sets}

V = V ∪ {i}

X∞ = X∞\{i}

for all j ∈ M(i) do

X∞ = X∞\{k} for all k ∈ N (j), k 6= i

Z∞ = Z∞\{j}

end for

p = p + 1

end while
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Figure 4.5: Performance over the BSC with crossover probability ǫ of dif-

ferent strategies for intentional puncturing. Coding rates used: R = 0.5

and R = 0.6.

Simulation Results

We have simulated the behavior of punctured codes over the binary symmetric chan-

nel with crossover probability ǫ. Results were computed using LDPC codes of 104 bits

length and different coding rates: R = 0.3, R = 0.4, R = 0.5 and R = 0.6. These codes

were constructed using the original PEG algorithm as proposed in Ref. [66]. Results

were computed under iterative decoding, using a sum-product algorithm with serial

schedule and 200 iterations maximum.

Figures 4.5 and 4.6 show FER over the BSC with crossover probability ǫ for dif-

ferent intentional puncturing strategies. Two LDPC codes were used with different

coding rates and different proportions of punctured symbols. In these figures, the

use of puncturing patterns as in Ref. [85] is compared with the algorithm proposed

here, which is also compared with the one in Ref. [88].

These results demonstrate that the degree of punctured symbol nodes should be

taken into account. The proposed algorithm is also compared to its simplified version,
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and it shows that the lowest symbol degree criterion is preferable, for simplicity, at

least when using PEG-based LDPC codes.

4.2.3 Shortening

Puncturing increases the rate by reducing the redundancy. The opposite is achieved

through shortening: by increasing the redundancy, the information rate is reduced.

This is done by fixing the value of a set of s symbols from the codewords in positions

known to encoder and decoder. Shortening, then, converts a C(n, k) code in a C(n−

s, k− s) one [91].

Figure 4.7 shows an example of shortening applied to a linear code. In the corres-

ponding Tanner graph one symbol is deleted from the encoding and a C(8, 4) code

with rate one half R0 = 1/2, is converted to a C(7, 3) code, decreasing the rate to

R = 3/7.

Let s be the number of shortened symbols, such that s < n, the information rate
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Figure 4.7: Shortening applied to a linear code.

of a shortened code is given by:

R =
k− s

n− s
=

R0 − σ

1− σ
(4.2)

where R0 is the rate of the mother code (unshortened code), and σ = s/n is the

fraction of shortened symbols, such that σ < 1.

Note that the set of shortened symbols is chosen now randomly from the set of

selectable symbol nodes. Techniques for the intentional selection of these symbols

are not needed, even when using short-length codes —contrary to puncturing where

these techniques, as the commented intentional puncturing, provide a considerable

improvement for decoding—. However, intentional shortening can be considered

when using puncturing and shortening simultaneously as it is commented below.

Figure 4.8 shows the performance over the BSC with crossover probability ǫ for a

binary LDPC code of 2× 103 bits length and rate one half, R0 = 1/2. Several curves

have been simulated for different proportions of shortened symbols. The distribution

of shortened symbols has been chosen randomly.
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Figure 4.8: Performance over the BSC with crossover probability ǫ for a

short-length LDPC code and different proportion of shortened symbols.

4.3 Rate-Adaptive LDPC Reconciliation

Typically, only puncturing or shortening are used to adapt the information rate of a

code. However, when using syndrome coding over time varying channels, using just

one of the two has the drawback that modifying the value of p or s implies modi-

fying also the length of the reconciled strings with every code use. The combined

application of both techniques allows to fix the length of the strings to reconcile and

overcome this problem. In this case, a modulation parameter d = p + s can be set,

thus fixing the lengths of two instances of X and Y to n− d while allowing to modify

p and s in order to adapt to different values of the channel parameter ǫ.

The result of simultaneously puncturing p symbols and shortening s symbols in

the original code, as proposed in Ref. [32], is thus a C(n − p − s, k − s) code with

information rate:
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Figure 4.9: Performance over the BSC with crossover probability ǫ for a

short-length LDPC code and different proportion of punctured and short-

ened symbols.

R =
k− s

n− p− s
=

R0 − σ

1− π − σ
(4.3)

where p and π are the number and the fraction of punctured symbols, respectively,

as defined above, such that π ≥ 0, σ ≥ 0 and π + σ < 1.

Let δ be the fraction of punctured and shortened symbols, δ = d/n = π + σ, a

δ-modulated rate-adaptive code covers the range of rates [Rmin, Rmax] given by:

Rmin =
R0 − δ

1− δ
≤ R ≤

R0

1− δ
= Rmax (4.4)

Figure 4.9 shows the performance of an error correcting code, again depicted as

FER versus the error rate of a BSC(ǫ) using both techniques simultaneously. A binary

short-length LDPC code of 2 × 103 bits length and rate one half, R0 = 1/2, was

used. Several curves have been simulated for different proportions of punctured and
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Figure 4.10: Channel model for the proposed rate-adaptive reconciliation

protocol assuming random puncturing and shortening.

shortened symbols, with d = 200. The fraction of punctured and shortened symbols

was chosen taking into account the asymptotic behavior of a δ-modulated rate-adaptive

code shown in Appendix A. Punctured symbols have been chosen according to a

pattern previously estimated, as proposed in Ref. [85], while shortened symbols have

been chosen in random fashion.

4.3.1 Rate-Adaptive Reconciliation Protocol

We formally describe below (see Algorithm 4) the method for rate-adaptive recon-

ciliation using puncturing and shortening techniques outlined above. Note that the

proposed reconciliation protocol can be carried out in the opposite direction —i.e.

exchanging Alice and Bob’s roles—. The process is then commonly referred as reverse

reconciliation [92].

A graphical interpretation of the proposed protocol is also depicted in Figure 4.10.

A similar depiction was already proposed in Ref. [76]. As shown in the figure, punc-

turing and shortening can be interpreted as the transmission of punctured and short-

ened symbols over a binary erasure channel (BEC) with crossover probability π/δ. In

the figure, it is used the same notation as used above to denote the fraction of punc-
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Algorithm 4 Rate-Adaptive Reconciliation Protocol

Step 0: Set up.— Let C(n, k) be a code C that can correct noise up to ǫmax for some

channel family. Let x and y be two strings that two parties Alice and Bob wish

to reconcile. Let x and y be of length m, with m = n− d, and every symbol of y

the output of a memoryless channel characterized by ǫ < ǫmax. Alice and Bob

establish:

s = ⌈

(

R0 −
1− d

n
R

)

· n⌉ (4.5)

p = d− s (4.6)

Step 1: Encoding.— Alice sends the syndrome in C of a word x̂ consisting on embed-

ding x in a n-length string and filling the remaining d positions (punctured and

shortened positions) with random symbols. Together with the syndrome, Alice

and Bob have to share the set of d positions and their values (i.e. every value in

a shortened symbol has to be transmitted).

Note that these positions and values can be synchronized using a pseudo-

random generator, avoiding then the corresponding channel bandwidth —and

its corresponding authentication—.

Step 2: Decoding.— Bob constructs the word ŷ consisting on the concatenation of y

the received s symbols and p random symbols. If Bob recovers x he reports

success and the protocol ends.
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tured and shortened symbols, π and σ respectively, such that δ = π + σ. Random

puncturing and shortening are assumed in the figure.

4.4 Simulation Results

Simulation results were computed to compare the efficiency of the rate-adaptive

reconciliation protocol proposed here and the efficiency of Cascade as proposed in

Ref. [5]. Figure 4.11 shows the efficiency, calculated as defined in Eq. (3.2), over the

binary symmetric channel with crossover probability ǫ. Unmodulated LDPC codes

as discussed in Ref. [26] are also depicted in the figure.

The efficiency of Cascade was computed for the reconciliation of 2× 105 bit-length

strings. Discontinuities in the curve of Cascade are due to initial block size used in the

protocol, given by k1 = 0.73/ǫ [11].

The efficiency of four LDPC codes covering a range of high error rates is also

depicted. They are referred as unmodulated codes since it was not used any method

to adapt the coding rate of these codes. It was used binary LDPC codes of 2× 105

bits length and coding rates R = 0.5, R = 0.6, R = 0.7 and R = 0.8. These codes

were constructed using ensembles of LDPC codes specifically optimized for the BSC3

and the progressive edge-growth algorithm for the construction of irregular codes

described in Section 3.3. For this simplest approach, the efficiency is getting worse

quickly as it can be appreciated in the figure. The unmodulated LDPC codes exhibit

an undesirable saw behavior that can lead to efficiencies worse than that of Cascade

unless many different codes are used.

Simulation results for the proposed rate-adaptive reconciliation protocol were

computed using two LDPC codes of 2 × 103 and 2 × 105 bits length, respectively,

and coding rate one half R0 = 0.5. The rate-adaptive approach was carried out with

a 10% of punctured and shortened symbols, δ = 0.1, and thus covering the high error

3Generating polynomials of these families of LDPC codes can be found in Appendix C.
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rate range [0.055, 0.11].

Note how the saw tooth behavior is eliminated. For long LDPC codes and the δ

value chosen the penalty is quite small —i.e. the efficiency is close to the working

point, for which no rate-adaptive technique was used— and the rate-adaptive proto-

col allows to reconcile strings in all the range with an efficiency close to f ≈ 1.1. The

new protocol works at a much better efficiency than Cascade, that performs in all the

tested range around f ≥ 1.2. However, when using short length codes, the efficiency

is worse than that of Cascade.
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Chapter 5

Interactive Reconciliation with

Low-Density Parity-Check Codes

This chapter is organized as follows. In Section 5.1 we introduce some feedback

coding schemes, and their application for interactive reconciliation is considered. In

Section 5.2 we propose an interactive version of the rate-adaptive protocol previously

described that improves the average efficiency. We refer to this protocol as blind. Next,

in Section 5.3 we analyze the average efficiency of the proposed interactive protocol

from a theoretical perspective. Finally, in Section 5.4 we show some simulation results

of this protocol using short-length LDPC codes.

5.1 Introduction

In classical communications common error detecting techniques, such as cyclic re-

dundancy check (CRC) codes, are used to detect errors at the receiver. The receiver

validates the transmission of any message and responds with an acknowledgment

(ACK) if no errors were detected. Otherwise, the receiver requests the retransmis-

sion of corrupted messages with a negative acknowledgment (NAK). This typical

communication scheme is known as automatic repeat request (ARQ).
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Powerful error correcting techniques, such as LDPC codes, can be used together

with ARQ schemes to improve the performance of classical communications. These

schemes are known as hybrid automatic repeat request or hybrid ARQ (HARQ) [81, 93,

94]. They operate quite well for a narrow error rate range, since the error correcting

code is chosen based on the channel parameter. Use of error correcting codes in-

crease the probability of successful transmissions in HARQ-based communications,

increasing thus the throughput of these communications.

Furthermore, a family of hybrid ARQ schemes was also proposed by adapting the

coding rate to time varying channels. A channel is considered time varying when its

parameter, e.g. the error rate, may vary in a known range. This new scheme is know

as incremental redundancy HARQ or type-II hybrid ARQ. Most of rate-compatible solu-

tions and rate-adaptive techniques for LDPC codes, such as puncturing, are analyzed

for this type of HARQ scheme [89, 95–100].

Here we propose a variation of the rate-adaptive reconciliation method described

above, Algorithm 4, based on the incremental redundancy HARQ idea. This original

interactive reconciliation protocol is based on the simultaneous use of punctured and

shortened symbols as described below.

5.2 Blind Reconciliation

In the adaptive-rate algorithm just outlined in Section 4.3, the proportion, δ, of punc-

tured plus shortened symbols is held constant. This proportion is calculated after an

error rate (channel parameter) estimation. Once is estimated the channel parameter,

the only classical communication that is needed among Alice and Bob is one message

from Alice to send the syndrome and the shortened information bits. This makes for

a close to minimal interactivity protocol that is also highly efficient. Now, if we relax

the interactivity condition and allow for a limited amount of communications, the

panorama changes significantly.

70



5.2 Blind Reconciliation

Let us start by assuming again a value for δ covering the range of rates [Rmin, Rmax]

with the code with Rmin able to correct words transmitted through the noisiest chan-

nel expected.

In a first message, Alice can include only the syndrome and no shortened bits, i.e.

all the d symbols that can be either punctured or shortened, are punctured (π = δ).

If we look back at Figure 4.8, where we plot the behavior of FER as a function of

ǫ using different proportions of punctured and shortened symbols, we can see that

we are trying to correct errors with the code with the highest FER and highest rate,

which is the one with d = 200.

If the reconciliation fails, no other information than the syndrome has been leaked,

since punctured symbols do not disclose information. Alice can then reveal a set of

the values of the previously punctured symbols. In this way the rate of the code is

reduced, but the decoding success probability is increased. Returning to Figure 4.8,

this is like moving along the dotted vertical line and changing the code with p = 200,

s = 0 (C(2000− 200, 1000)) by the code with p = 160, s = 40 (C(2000− 200, 1000− 40))

and using it to correct the same string. Only the previously punctured but now

shortened symbols reveal extra information. The protocol runs on the same string

by revealing more information on the values of previously punctured symbols till

success is achieved (or all the symbols were shortened without syndrome matching

and it fails), effectively by using at each iteration codes with lower rate and FER.

5.2.1 Blind Protocol

In Figure 5.1 we illustrate two iterations of the protocol in use to reconcile a string of

length m = 8 using d = 8 extra symbols. It is also assumed that in every iteration

∆ = 4 symbols can be changed from punctured to shortened. In the first step, the

m symbols are incremented with the d = 8 punctured ones to a total length of n =

m + d = 16. At this point, the syndrome is calculated and the value sent to Bob. It

is assumed that there is no syndrome match, hence the next iteration in which ∆ of
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Figure 5.1: Blind reconciliation protocol schema for a three iteration ver-

sion.
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the previously punctured symbols change to shortened. This information is sent to

Bob. Again, a no match is assumed and the protocol proceeds to its second iteration,

where another ∆ symbols are revealed changing from punctured to shortened. Here

the protocol ends, no matter whether there is a syndrome match or not, since all the

punctured symbols have changed to shortened. If the syndrome is validated, then it

can be safely assume that the string (x1, x2, . . . , xm) in Alice’s side and (x̂1, x̂2, . . . , x̂m)

in Bob’s side are the same. Otherwise, the protocol fails for this string.

This whole procedure is done using the same base code and without needing an

estimate for ǫ, hence the blind name. Only a rough estimate of the channel parameter

is needed to design the base code. Note that this protocol requires some interactivity

since, at each iteration in which there is no syndrome matching, a set of values for

the shortened symbols must be communicated. As we show in the results section, a

protocol with a very high average efficiency can be obtained using short codes and

using only three iterations.

5.2.2 Interactive/Blind Protocol

We formally describe below the method for blind reconciliation outlined above in

Algorithm 5. Note how there is no need of an a priori error estimate (except for the

one implicitly embodied in the selection of the code C) and a controlled amount of

interactivity (t messages are exchanged at most).

5.3 Average Efficiency

It is supposed now that we can repeat the reconciliation process n times. We refer

to each recurrence of the protocol as iteration. In each iteration the protocol adapts

the information rate of our code in order to reconcile as many errors as possible by

providing the minimum information. Starting from the highest coding rate, the pro-

posed protocol is decreasing the information rate in each iteration. The reconciliation
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Algorithm 5 Blind Reconciliation Protocol

Step 0: Set up.— Let C(n, k) be a code C that can correct noise up to ǫmax for some

channel family. Let x and y be two strings that two parties Alice and Bob wish

to reconcile in at most t iterations. Let x and y be of length m, with m = n− d,

and every symbol of y the output of a memoryless channel characterized by

ǫ < ǫmax. Alice and Bob set s = 0, p = d and ∆ = d/t. For simplicity in the

description we assume ∆ ∈ N.

Step 1: Encoding.— Alice sends the syndrome in C of a word x̂ consisting on embed-

ding x in a length n string and filling the remaining d positions with random

symbols.

Step 2: Decoding.— Bob constructs the word ŷ consisting on the concatenation of y

the received s symbols and p random symbols. If Bob recovers x he reports

success and the protocol ends.

Step 3: Re-transmission.— If d = s the protocol fails, else Alice sets s = s + ∆, reveals

Bob ∆ symbols and they return to Step 2 and perform a new iteration.
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process stops in the iteration where the syndrome is validated, and thus every error

has been reconciled with high probability.

The average efficiency over the BSC(ǫ) for the proposed blind reconciliation pro-

tocol can be calculated as:

f̂ (ǫ) =
n

∑
i=1

αi f (i) (5.1)

where αi is the fraction of codewords that have been corrected in the step i, such that

∑
n
i=1 αi = 1. Using Eq. (3.7) we obtain the expression for the average efficiency over

the BSC(ǫ):

f̂BSC(ǫ) =
1−∑

n
i=1 αiri

h(ǫ)
=

1− R̂

h(ǫ)
(5.2)

where ri is the information rate used during the i-th iteration, and R̂ is the average

rate used during the reconciliation process.

Let F(i) be the frame error rate (FER) when correcting with adapted rate ri. Then

the fraction of corrected codewords during the i-th iteration is given by:

αi =
F(i−1) − F(i)

1− F(n)
(5.3)

where F(0) = 1.

Now, the average rate can be expressed as:

R̂ =
n

∑
i=1

F(i−1) − F(i)

1− F(n)
· ri (5.4)

The sum can be simplified as follows:
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Chapter 5 Interactive Reconciliation with Low-Density Parity-Check Codes

n

∑
i=1

(F(i−1) − F(i)) · ri = (5.5)

= F(0)r1 − F(1)r1 + F(1)r2 − F(2)r2 + . . . + F(n−1)rn − F(n)rn (5.6)

= F(0)r1 + F(1)(r2 − r1) + F(2)(r3 − r2) + . . .− F(n)rn (5.7)

= r1 − F(n)rn +
n−1

∑
i=1

F(i)(ri+1 − ri) (5.8)

And thus:

R̂ =
r1 − F(n)rn

1− F(n)
+

n−1

∑
i=1

F(i)

1− F(n)
(ri+1 − ri) (5.9)

Assuming that in every iteration we translate a constant proportion of punctured

symbols to shortened symbols, the information rate used during the i-th iteration is

given by:

ri =
R0 − σi

1− δ
(5.10)

where R0 is the coding rate of the mother code, and σi is the fraction of shortened

symbols during the i-th iteration, such that σ1 = 0 and σn = δ. The rate increment

between two consecutive iterations is also constant:

ri+1 − ri =
−δ/n

1− δ
(5.11)

Let us define β = δ/(1− δ) and then ri+1 − ri = −β/n. The average rate can be

now written as:

R̂ =
r1 − F(n)rn

1− F(n)
−

β

n

n−1

∑
i=1

F(i)

1− F(n)
(5.12)

= r1 +
β

1− F(n)

(

F(n) −
1

n

n−1

∑
i=1

F(i)

)

(5.13)

76



5.3 Average Efficiency

Where we have taken into account that in the first iteration every selected symbol

is punctured, while in the last one every selected symbol is shortened, hence, the first

and last coding rate, r1 and rn, are given by:

r1 =
R0

1− δ
; rn =

R0 − δ

1− δ
= r1 − β (5.14)

Note that in the rate-adaptive approach a typical value for the frame error rate in

a reliable reconciliation is 10−3; i.e. we can then neglect the last contribution for the

FER (F(n) ≈ 0), and thus an approximate average rate is given by:

R̂ ≈ r1 −
β

n

n−1

∑
i=1

F(i) (5.15)

An approach for estimating the frame error rate of a linear code is described in

Appendix B. Using this approach we can accurately estimate the frame error rate

of a finite length LDPC code without having to perform computer simulations. We

use then Eq. (5.2) and Eq. (5.15) to calculate the average efficiency for the interactive

reconciliation protocol analyzed here.

Figure 5.2 shows the estimated efficiency for a short-length LDPC code of 2× 103

bits in the error rate range ǫ ∈ [0.04, 0.08]. The rate adaptive protocol of Ref. [34]

(code with p = 200 in Figure 4.8) is compared to the blind protocol for short codes.

In the figure it is shown the average efficiency for different numbers of iterations.

These curves are compared to the efficiency of the rate-adaptive solution described in

Section 4.2.3. Rate-adaptive and blind protocol coincide for the starting base code (the

code with p = 200 in Figure 4.8), point marked A in the figure. When the error rate

increases, the blind protocol adapts its behavior to the new channel parameter. De-

pending on the number of iterations allowed, which limits its maximum interactivity,

the protocol is shown to approach the threshold.
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Figure 5.2: Average efficiency of the proposed blind reconciliation protocol

for several maximum number of iterations.

5.4 Simulation Results

Simulation results have been computed to compare the protocol proposed in Ref. [34]

with the interactive version proposed here, but using short-length LDPC codes. These

simulations were performed for two error rate ranges, one with low error rates and

other with high ones, over the binary symmetric channel. An LDPC decoder based

on the sum-product algorithm with 200 maximum decoding iterations and serial

schedule was used.

New families of LDPC codes were designed (see Appendix C), and the code

graphs were constructed using the modified version of the progressive edge-growth

algorithm proposed here and the improved version proposed in Ref. [66] in order to

reduce the residual error in the error floor region. Punctured symbols were selected

according to a computed pattern for intentional puncturing as described in Ref. [35],

while shortened symbols were randomly selected.
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Figure 5.3: Simulated efficiency for the rate-adaptive and the interactive

reconciliation protocols in the high error rate region.

Figures 5.3 and 5.4 show the efficiency, as defined in Eq. (3.2), of the rate-adaptive

protocol proposed in Ref. [34], and the average efficiency of the interactive version

proposed here. A lightweight interactive protocol, with 3 iterations maximum, is

compared with the maximally interactive version where in every iteration only one

punctured symbol becomes a shortened one. Simulations have been computed using

an LDPC code of 2 × 103 bits length and coding rate R = 0.5 with δ = 0.1. As

expected, a behavior similar to Figure 5.2 is found, where the efficiency coincides for

the rate-adaptive and interactive approaches for error rates below A. It is shown how

the efficiency improves with interactivity (more iterations) and also with the error

rate.

In both figures, the average frame error rate (FER) is printed for each point of

the version with a maximum of three iterations. In Figure 5.3 it was used LDPC

codes constructed with the modified PEG algorithm proposed here (see Section 3.3),

79



Chapter 5 Interactive Reconciliation with Low-Density Parity-Check Codes

0.05 0.06 0.07 0.08 0.09
 ε 

1

1.1

1.2

1.3

1.4

1.5

1.6
 E

ffi
ci

en
cy

 A

5.0e-07

1.1e-06

1.5e-06

1.0e-05
1.5e-04 1.6e-03 1.2e-02 5.4e-02

Rate-adaptive
Interactive: 3 iters
Interactive: d iters

Figure 5.4: Simulated efficiency for the rate-adaptive and the interactive

reconciliation protocols in the high error rate region.

while in Figure 5.4 LDPC codes were constructed using the improved PEG algorithm

proposed in Ref. [66]. Comparing the values of the average FER printed in the three

iterative version of both figures, it can be appreciated the impact of the error floor in

the original LDPC code.

Figure 5.5 also compares the efficiency and the average efficiency for the reconci-

liation protocols analyzed here. In this case the efficiency is studied in the low error

rate range in QKD. An LDPC code of 104 bits length and coding rate R = 0.8 is used.

Due to this high coding rate, only the 5% of symbols were selected for puncturing and

shortening, also using the aforementioned strategy for intentional puncturing. The

figure shows that the average efficiency quickly improves with the blind protocol,

even when using only three iterations.

If we try to increase the range of error rates covered, we can increase the pro-

portion of punctured and shortened symbols (see Eq. (4.4)). The results are shown
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Figure 5.5: Simulated efficiency for the rate-adaptive and interactive pro-

tocols in the low error rate region.

in Figure 5.6, where the proportion is set to 8%, the maximum achievable value fol-

lowing the intentional puncturing proposal described in Ref. [35]. We can observe

that for a fixed number of iterations the efficiency is worse (compared to Figure 5.5),

see the dotted line with a maximum of three iterations; though the efficiency for the

maximum d iterations, as d is higher, improves.

In order to understand the behavior of the curve for the interactive version with

a maximum of three iterations, the figure shows the efficiency of using LDPC codes

with the coding rates associated with each iteration:

r1 =
R0

1− δ
; r2 =

R0 − δ/2

1− δ
; r3 =

R0 − δ

1− δ
(5.16)

The increase in efficiency with the number of iterations opens the possibility of

having both, high efficiency and high throughput.

The new generation of QKD systems are approaching speeds for encryption close

to 1 Gbps [101]. Implementing real time error correction to provide secret keys at this
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speed is a challenging problem where a high throughput procedure with minimal

communications is needed. Using Cascade under these constraints is unfeasible un-

less an extremely low latency network is used. Short-length LDPC codes have been

implemented in hardware for other purposes, like wireless networks [102], where

they have demonstrated to be an excellent solution.

In the QKD case, to use LDPC codes required to have codes designed for different

error rates, thus making the process more complex and memory constrained. With

the protocol presented here, the error estimation phase is not needed. The procedure

can start directly and, if it fails, allowing a few iterations increases considerably the

success probability. The price to pay is an extra message per failure. As shown in

Figure 5.2 and Figures 5.4-5.6, the process converges quickly and only a few iterations

are needed to increase the reconciliation efficiency significantly.

In a hardware implementation, the iterations are easily realized just by copying

the same functional decoder block as many times as the number of desired iterati-

ons. The string to be reconciled would start the i-th iteration in the first hardware

block. If the decoding fails, the next hardware block would continue processing in

a pipeline fashion, since computation and communication can be arranged in a way

such that the disclosed symbols would arrive packed in the same message than the

syndrome of the following strings to reconcile. The new syndrome would start being

processed in the first hardware block while the second would continue working on

the second iteration on the previous string. This pipeline can increase the efficiency

while maintaining a high and —mostly— constant throughput at the expense of some

extra hardware.
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Chapter 6

Reliable Reconciliation and

Undetected Error Probability

Implicit in everything discussed so far is the reliability of a reconciled string (the

key), or what is the same thing, it has not been previously commented how often

the reconciliation process can end up with undetected errors. In this chapter, we study

this undetected error probability and its impact on the reliability of a secret-key re-

conciliation process using LDPC codes. In this regard, everything discussed below

is presented from the perspective of information reconciliation rather than from the

traditional coding context.

Before proceeding, it should be noted that all simulations in previous chapters

were computed taking into account both contributions to the error rate, detected and

undetected errors.

6.1 Introduction

As its name suggests, an undetected error in the information reconciliation context is

any discrepancy on the reconciled string which is unknown by the communication

parties. Therefore, due to undetected errors it may occurs that two parties do not
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share any secret after the reconciliation process, since their reconciled strings are not

identical, and both parties are unaware of this error.

In practice, undetected errors can be avoided using a separate error detection

scheme. Cyclic redundancy check (CRC) codes, checksums and hash functions are

probably the most widespread methods for detecting errors in digital communica-

tions. However, even in such codes it remains a probability that some errors are not

detected [103]. The analysis of this error detection probability of a given parity-check

matrix is a classical problem in coding theory [104, 105]. Moreover, the analysis of

these undetected errors are of special interest in practice when working with feed-

back error correction schemes, for instance based on ARQ or hybrid ARQ, such as the

previously proposed blind algorithm (see Section 5.2). In this work, we focus on the

study of this undetected error probability using LDPC codes, taking into account that

these codes have the inherent capability to reconcile as well as detect errors by val-

idating the final calculated syndrome. Error detection is accomplished by verifying

satisfaction of all check node constraints at the end of every iteration.

Undetected errors in LDPC codes were originally analyzed by MacKay in Refs. [51,

106, 107]. As commented by the author, they reveal some properties of a code, such

as minimum distance and weight distributions. In Ref. [108] Wadayama shows this

relationship following a probabilistic approach of randomly generated codes:

“Since the undetected error probability can be expressed as a linear combina-

tion of weight distribution of a code, there are natural connection between expec-

tation of weight distribution and expectation of undetected error probability.”

Let Pd to be the detected error probability, and Pu to be the undetected error

probability. The total probability of codeword error is then given by Pw = Pd + Pu.

Let H be the parity-check matrix of a code C. An undetected error occurs when

Het = 0 and e 6= 0, it means that the error vector is a codeword e ∈ C. Assuming

that no decoding technique is used —i.e. the linear code C is used only to detect

errors in the transmitted codeword by validating the syndrome—, the undetected
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error probability, Pu, in the binary symmetric channel with crossover probability ǫ is

then given by:

Pu = ∑
e∈C,e 6=0

ǫw(e)(1− ǫ)n−w(e) (6.1)

where e denotes an error vector, and w(e) denotes the Hamming weight of this error

vector.

However, the probability of an undetected error depends on both the code C and

the decoding algorithm D used to reconcile the key, and thus Pu as defined in Eq. (6.1)

is only a lower bound of the undetected error rate. Henceforth, we assume the use of

LDPC codes and iterative message-passing algorithms for decoding.

6.2 Undetected Errors in LDPC Codes using Iterative

Message-Passing Decoding

In an iterative message-passing algorithm, such as the sum-product algorithm, an

error is said to be detected if the decoding process concludes after completing the

maximum number of iterations without finding a codeword. Error detection is ac-

complished by verifying satisfaction of all check node constraints at the end of ite-

rations. On the other hand, an undetected error occurs when the decoder finds a

codeword x̂ satisfying Hx̂t = z, i.e. the syndrome matches, but that codeword does

not correspond with the transmitted one x, x = x̂.

It should be noted that different strategies for the original flooding scheduling

demonstrate that undetected errors can be avoided using a particular decoding stra-

tegy [62]. Here, we show different strategies that can be used to reduce the probability

of undetected errors to acceptable levels using iterative LDPC decoding, by means of

a simple modification to the iterative decoder structure without redesigning the code.
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6.2.1 Bounded Iterative Decoding

An original method to reduce the undetected error rate of short-length LDPC codes

is proposed in Ref. [109]. The proposed method is based on calculating the Euclidean

angle between the received word and the decoded codeword at the receiver. This

codeword is then rejected if the calculated angle is greater than a threshold. With

a judicious choice of the maximum decoding angle, the undetected error rate can

be reduced while the overall error rate increases modestly. This modification in the

decoding algorithm is called bounded angle iterative decoding by the authors. An upper

bound on the performance of the proposed method is later analyzed in Ref. [110] for

maximum-likelihood decoders.

Let x be the received word, and let ci be the decoded codeword at the receiver

(i.e. assuming that a valid codeword was found during the decoding process). The

Euclidean angle θi is then calculated as:

θi = cos−1

(
〈x, ci〉

‖x‖‖ci‖

)

(6.2)

The decoded codeword is only accepted if this angle θi is lower that a maximum

decoding angle θmax. A similar method is also commented by the authors where the

Euclidean angle is replaced by the Euclidean distance.

6.2.2 Decoding Quasi-Cyclic Codes

An undesirable effect of digital communications is the insertion and deletion of sym-

bols mainly due to synchronization errors. Some previous work in communication

theory deal with this problem when using LDPC codes, e.g. see Ref. [107]. Symbol

blocks are entirely shifted by the insertion or deletion of symbols, and it may result in

decoding a wrong codeword. This effect, referred as symbol slip, is especially critical

when using quasi-cyclic LDPC codes as analyzed in Ref. [111] since these decoding

errors are the cause of undetected errors.
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We discuss this problem here as quasi-cyclic LDPC codes are very common in

standards and hardware implementations, e.g. see [102]. However, it should be noted

that this kind of synchronization errors are not usual in quantum key distribution —

according to the approach adopted in this work—, since each symbol (bits of the key)

to reconcile is well-synchronized after the sifting procedure.

In Ref. [111], the authors analyze why symbol slips can produce undetected errors

when using quasi-cyclic LDPC codes, and they propose several methods to prevent

these errors. A simple way to avoid them is based on the use of a pseudo-random

number sequence. On one side, the emitter performs an XOR operation between the

codeword and a pseudo-random number sequence. On the other side, the receiver

performs the same operation undoing the emitter changes and avoiding the symbol

slip in quasi-cyclic codes.

6.3 Simulation Results

Simulation results over the binary symmetric channel were computed to analyze the

undetected error probability of 2× 103 bits length LDPC codes and coding rate one

half. All simulations were computed using a sum-product algorithm, with serial

scheduling, but different decoding parameters. For instance, simulation results are

compared for a different number of maximum decoding iterations, and with or with-

out codeword validation after each iteration. LDPC codes analyzed here were con-

structed using a PEG-based algorithm.

Figure 6.1 shows the frame error rate, Pw, and the undetected error probability,

Pu, of a 2× 103 bits length LDPC code with coding rate one half. Results are shown

for a range of crossover probabilities ǫ. Simulation results for 20 and 200 maximum

decoding iterations are compared. The figure shows that the undetected error prob-

ability remains low even for high crossover probabilities, a behavior that is crucial to

the success of the previously proposed blind protocol.
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Figure 6.1: Performance and undetected error rate over the BSC with

crossover probability ǫ of a PEG-based LDPC code.
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Figure 6.2: Performance and undetected error rate over the BSC with

crossover probability ǫ of a PEG-based LDPC code.
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Figure 6.3: Performance and undetected error rate over the BSC with

crossover probability ǫ using look-up tables of different sizes.

The LDPC code previously used in Figure 6.1 is again analyzed with a modified

decoder. Figure 6.2 shows the performance and undetected error rate using an LDPC

decoder with an smaller look-up table (ST), a probably desirable behavior in hard-

ware or fast decoding implementations. Simulation results for 20 and 200 maximum

decoding iterations are compared. The figure shows an strange behavior in the error

floor region that has to be considered for the average efficiency of the interactive pro-

tocol proposed in Section 5.2.2. At first glance, this strange behavior does not cause

a greater probability of undetected errors.

In Figure 6.3 we compare FER and undetected error rate of both LDPC decoders,

i.e. using look-up tables of different sizes. Simulation results for two look-up tables

of 106 and 107 values are compared. A number of 200 maximum decoding iterations

is used in both simulations. Despite the noticeable difference in performance in the

error floor region, the undetected error probability does not show any difference.
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Concluding Remarks
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Chapter 7

Conclusions

In this work we have shown how LDPC codes can be used to improve the perfor-

mance of classical methods for information reconciliation. Based on the Wynner’s

idea of syndrome source coding, we studied how LDPC codes can be applied to the

problem of information reconciliation. We have developed a protocol able to modu-

late the information rate of LDPC codes. The ability to adapt error correcting codes to

different error rates is crucial to minimize the amount of information disclosed during

the secret-key reconciliation. We also introduce the concept of efficiency as a measure

for the quality of the reconciliation process. In the QKD context the efficiency is spe-

cially important, whenever it is used in long distance links or in noisy environments

such as those arising in shared optical networks [27, 28, 112–115]. In these demand-

ing environments high efficiency is necessary to distill a secret-key when maximum

distance or absorption budget is required.

In practical QKD, throughput is also of paramount importance. Here, we analyzed

the performance of LDPC codes using incremental redundancy HARQ schemes.

These schemes are also used to improve the throughput in classical communications.

We show how a similar scheme can be used to improve the average efficiency of an

information reconciliation procedure. The results show that the average efficiency
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may even be improved using short-length LDPC codes1 and an slightly interactive

protocol which is also good for a high throughput HW implementation. For instance,

it is shown that a protocol with very low interactivity —i.e. with a maximum of three

iterations— improves considerably the efficiency in high and low error rate regimes.

This protocol can be easily implemented in hardware, since it uses short-length LDPC

codes, and it can be also pipelined for a very high throughput of reconciled key.

The proposed interactive protocol also improves the final secret-key length. Up to

now, in a QKD protocol part of the raw key has to be disclosed in order to estimate

the channel parameter, i.e. the error rate. The new protocol does not need an a priori

error rate estimate to work; it adapts automatically —hence the name blind—. As a

result, the protocol also provides the exact error rate corrected, bringing interesting

implications for the security analysis of finite length keys.

1Between 2× 103 and 104 bits long.
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Future Work

QKD is an evolving and dynamic field but also with recognized long term goals.

Two of the most cited ones: quantum repeaters networks and device independent

QKD are among the last ones. These breakthroughs would allow a worldwide quan-

tum network, either for security or computation purposes, but much basic research

remains to be done. In the more technologically oriented short term view, one of

the most important challenges of current developments in QKD is to ease the barrier

among the lab prototypes and its actual deployment as industrial grade appliances.

Towards this goal, significant advances should be pursued in: (1) the integration of

QKD devices in commercial optical networks, (2) the development of high perfor-

mance devices with high secret-key rates, and (3) the construction of more affordable

devices. Moreover, we must also emphasize that all these challenges are faced from

the standardization and miniaturization of QKD devices.

The research presented in this work was focused on the development of efficient

protocols for reconciliation, that are also easy to implement in hardware and embed-

ded devices, in line with the goals mentioned above. LDPC codes where selected

for this work since they are capacity achieving for some communication channels,

and there exist efficient decoding techniques that can be implemented in common

hardware devices, such as the well-known field-programmable gate array (FPGA) or

97



Chapter 8 Future Work

the also common very-large-scale integration (VLSI) circuits. Short-length codes, for

instance, were simulated with this purpose.

We constructed LDPC codes from pre-designed ensembles of codes using PEG-

based algorithms. As a future line of work, it may be interesting to analyze other

codes, such as quasi-cyclic codes, for which there exist even more efficient decoding

techniques. A tradeoff between efficiency and throughput must also be analyzed to

maximize the final secret-key rate.

Also, towards the final application of the proposed protocol together with the

privacy amplification phase, the effect of the protocol on the finite-key effects must

still be studied, mainly when using short-length LDPC codes.
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Appendix A

Theoretical Thresholds

In the δ-modulated method proposed in Section 4.3 for the construction of rate-adaptive

LDPC codes, there is a tradeoff between the covered error range, increasing with δ,

and the efficiency of the procedure, decreasing with higher δ values. The higher δ

value, the greater covered error range, but the threshold if getting far from the un-

modulated threshold for δ values higher that 0.1. This behavior was originally shown

in Ref. [34], and it is also depicted here in Figure A.1.

Figure A.1 shows the theoretical efficiency (threshold) of the proposed protocol

for the asymptotic case, i.e. assuming that infinite length LDPC codes are used for

the reconciliation. Efficiency was computed for different proportions of punctured

and shortened symbols. These theoretical values were computed using a discretized

version of the density evolution algorithm [54] to estimate the theoretical threshold

of each code for the proposed proportion of punctured and shortened symbols.
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Figure A.1: Efficiency thresholds computed for the proposed construction

of δ-modulated rate-adaptive LDPC codes using different proportion of

punctured and shortened symbols.
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Analysis of Finite Length Low-Density

Parity-Check Codes

Nowadays, there exist some methods to analyze the asymptotic behavior of LDPC

codes. One of those methods is the density evolution proposed in Ref. [31]. This is

a well-known procedure able for determining the capacity of LDPC codes (i.e. the

theoretical threshold of a family of LDPC codes) under message-passing decoding.

However, the analytical behavior of finite length LDPC codes in the mostly used chan-

nels is, to date, one of the most important uncovered problems in the area. An initial

approach was carried out for the binary erasure channel in Ref. [60], but consider-

ing only a given regular ensemble of LDPC codes. Recently, new studies have been

proposed for the analytical study of finite length codes in the waterfall region. These

new approaches were motivated by the study of a physical phenomenon (commonly

used in statistical physics) described by the scaling law, an observed phenomenon

in most systems when go through a phase transition state. This transition state oc-

curs in LDPC decoding when the channel crossover probability, ǫ, is achieving the

threshold of the code, ǫ∗. This phenomenon was firstly applied for the study of finite

length LDPC codes in the binary erasure channel in Ref. [116], and extended for the

study of punctured codes in Ref. [80]. In this work we use the approximation of this

125



Chapter B Analysis of Finite Length Low-Density Parity-Check Codes

phenomenon for finite length communications using the concept of observed channel

introduced in Ref. [117], a simpler approach but with an acceptable accuracy.

B.1 Observed Channel

Any communication channel (discrete memoryless channel) is stochastically modeled

by a set of parameters. For instance, the binary symmetric channel (BSC) is parame-

terized by its error rate ǫ, BSC(ǫ), as shown in Figure 2.2. However, these parameters

accurately describe the behavior of the modeled channel only in the asymptotic case,

i.e. assuming infinite length communications. In the BSC(ǫ) we define the observed bit

error rate in a communication, Pobs, as the number of errors divided by the length of

this communication, N. This observed value is constant only in the asymptotic case,

i.e. Pobs = ǫ ∀N only when N → ∞. The distribution of errors in our observed BSC

channel is then described by the following probability mass function (pmf):

fPobs
(ǫ, N, x) =

(
N

Nx

)

ǫNx(1− ǫ)N−Nx (B.1)

where Nx is the number of errors in the communication of length N, such that it is

an integer in the range [0, N], i.e. 0 ≤ Nx ≤ N. For convenience we will omit the

parameters for the channel and the communication length, C(θ) and N respectively,

when these are understood without complicating the notation. Notice that since

fPobs
(x) is a pmf, we have that ∑x fPobs

(x) = 1.

Assuming that the length of the communication is large enough, i.e. when it is

higher than a few thousand bits, this pmf can be approximated with high precision

by using a (continuous) Gaussian probability density function centered around the

error rate ǫ and with variance σ2
Pobs

= ǫ(1− ǫ)/N:

fPobs
(ǫ, N, x) ≈ N (µPobs

, σ2
Pobs

) (B.2)
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Figure B.1: Graphical interpretation of frame error rate.

B.2 Frame Error Rate

Let us now consider that we are using a finite length linear code to correct any error

occurred during the communication, then we can estimate the ratio of codewords that

cannot be corrected by calculating the probability that the observed channel behaves

worse than the decoding threshold of our code, ǫ∗ (see Ref. [31]). Figure B.1 shows a

graphical interpretation of this ratio —ratio of codewords that cannot be corrected—

according to the error distribution in an observed channel, i.e. assuming a finite

length communication.

Using an error correction code of length N with a theoretical threshold of ǫ∗, the

FER for our BSC(ǫ) channel can be reasonably approximated by:

FPobs
(ǫ, N, ǫ∗) = 1− Pr(Pobs ≤ ǫ∗) (B.3)

= Pr(Pobs > ǫ∗) =
∫ 1

ǫ∗
fPobs

(ǫ, N, x)dx (B.4)

Using the Gaussian approximation:
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Figure B.2: Finite length analysis for different communication lengths.

FPobs
(ǫ, N, ǫ∗) ≈

1
√

2πǫ(1− ǫ)/N

∫ 1

ǫ∗
e
− N(x−ǫ)2

2ǫ(1−ǫ) dx (B.5)

Note that, for convenience, we have used the term F instead of FPobs
(C(θ), N, ǫ∗)

in the main body of the paper.

Note also that this analytical approximation is only valid for the behavior in the

waterfall region of an error correction code, since it does not include information

about the performance in the error floor regime. Figure B.2 shows the performance

of this approach for a correcting code with threshold of 0.10 and different codeword

lengths of 2× 103, 104 and 2× 104 bits.
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Appendix C

Ensembles of Low-Density

Parity-Check Codes

Table C.1 shows the symbol node distribution, λ(x), of those ensembles of LDPC

codes that have used in this work. Other ensembles of LDPC codes have been ex-

tracted from Refs. [26, 52].
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Table C.1: λ-distribution of LDPC code ensembles for different coding

rates.

Rate: R = 0.3 R = 0.4 R = 0.5 R = 0.6 R = 0.7 R = 0.8

λ1 0.247205 0.181749 0.159673 0.116530 0.091699 0.066795

λ2 0.225225 0.147329 0.121875 0.125646 0.171401 0.194832

λ3 0.054374 0.054427 0.112610 0.108507 0.068388 0.057052

λ4 0.070728 0.190871 0.053422 0.120523 0.064502

λ6 0.068692 0.072723

λ7 0.034796

λ8 0.153518 0.135139 0.072999 0.204606

λ9 0.168646 0.077062

λ10 0.187471

λ14 0.096441

λ17 0.075261

λ24 0.337909

λ27 0.208278

λ28 0.238720

λ29 0.152239

λ31 0.117103

λ34 0.159581 0.077052

λ39 0.151032 0.182355

λ44 0.223013

Threshold: 0.180247 0.140508 0.102592 0.074526 0.050187 0.028941

Shannon: 0.189298 0.146102 0.110028 0.079383 0.053239 0.031124

Channel: BSC BSC BSC BSC BSC BSC

130



Vitae

Jesus Martinez-Mateo is a doctoral researcher at the Technical University of Madrid

(UPM). He has a bachelor degree in Computer Science Engineering and master of

science in Computational Mathematics by the UPM. He is member of the research

group on Quantum Information and Computation. He is contributing to several

research projects for the study and design of a metropolitan quantum key distribution

network. Outstanding projects: CENIT Segur@. funded by the Ministry of Trade and

Industry of Spain, and QUITEMAD among others.

He reconciles his research with the development of free and open source software

(e.g. Lan Core). He is also member of an university cooperation for development

group, TEDECO (Technology for Development and Cooperation) at UPM, and he has

been part of two field missions to the University of Ngozi, in Burundi.

131




