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Abstract The security of quantum key distribution protocols is guaranteed by the
laws of quantum mechanics. However, a precise analysis of the security properties
requires tools from both classical cryptography and information theory. Here, we
employ recent results in non-asymptotic classical information theory to show that
one-way information reconciliation imposes fundamental limitations on the amount
of secret key that can be extracted in the finite key regime. In particular, we find that
an often used approximation for the information leakage during information reconcil-
iation is not generally valid. We propose an improved approximation that takes into
account finite key effects and numerically test it against codes for two probability
distributions, that we call binary–binary and binary–Gaussian, that typically appear
in quantum key distribution protocols.
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1 Introduction

Quantum key distribution (QKD) [4,10] is a prime example of the interdisciplinary
nature of quantum cryptography and the first application of quantum science that has
matured into the realm of engineering and commercial development. While the secu-
rity of the generated key is intuitively guaranteed by the laws of quantum mechanics,
a precise analysis of the security requires tools from both classical cryptography and
information theory (see [27,36] for early security proofs, and see [34] for a compre-
hensive review). This is particularly relevant when investigating the security of QKD
in a practical setting where the resources available to the honest parties are finite and
the security analysis consequently relies on non-asymptotic information theory.

In the following, we consider QKD protocols between two honest parties, Alice and
Bob, which can be partitioned into the following rough steps. In the quantum phase,
N physical systems are prepared, exchanged and measured by Alice and Bob. In the
parameter estimation (PE) phase, relevant parameters describing the channel between
Alice and Bob are estimated from correlations measured in the quantum phase. If the
estimated parameters do not allow extraction of a secure key, the protocol aborts at
this point. Otherwise, the remaining measurement data is condensed into two highly
correlated bit strings of length n in the sifting phase—the raw keys Xn for Alice and
Yn for Bob [31]. We call n the block length, and it is the quantity that is usually
limited by practical considerations (time interval between generated keys, amount of
key that has to be discarded in case Alice and Bob create different keys, hardware
restrictions). In the information reconciliation (IR) phase, Alice and Bob exchange
classical information about Xn over a public channel in order for Bob to compute an
estimate X̂n of Xn . The confirmation (CO) phase ensures that X̂n = Xn holds with
high probability, or it aborts the protocol. Finally, in the privacy amplification (PA)
phase, Alice and Bob distill a shared secret key of � bits from Xn and X̂n . We say that a
protocol is secure if (up to some error tolerance) both Alice and Bob hold an identical,
uniform key that is independent of the information gathered by an eavesdropper during
the protocol, for any eavesdropper with access to the quantum and the authenticated
classical channel.

The ratio �/N is constrained by the following effects: (1) Some measurement results
are published for PE and subsequently discarded. (2) The sifting phase removes data
that is not expected to be highly correlated, thus further reducing the length n of the
raw key. (3) Additional information about the raw keys is leaked to the eavesdropper
during the IR and CO phase. (4) To remove correlations with the eavesdropper, Xn

and X̂n need to be purged in the PA phase, resulting in a shorter key. Some of these
contributions vanish asymptotically for large N while others approach fundamental
limits.1

Modern tools allow to analyze QKD protocols that are secure against the most
general attacks. They provide lower bounds on the number of secure key bits that
can be extracted for a fixed block length, n. For the BB84 protocol, such proofs are,
for example, given in [33,35] and [14]. These proofs were subsequently simplified

1 Consider, for example, BB84 with asymmetric basis choice [25] on a channel with quantum bit error rate
Q. Here, contributions (1) and (2) vanish asymptotically while contributions (3) and (4) converge to h(Q).
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to achieve better key rates in [43] and [17], respectively (see also [42] for a recent
detailed proof). All results have in common that the key rate that can be achieved with
finite resources is strictly smaller than the asymptotic limit for large n—as one would
intuitively expect.

We are concerned with a complementary question: Given a secure but otherwise
arbitrary QKD protocol for a fixed n, are there fundamental upper bounds on the length
of the key that can be produced by this protocol? Such bounds are of theoretical as
well as practical interest since they provide a benchmark against which contemporary
implementations of QKD can be measured. In the asymptotic regime of large block
lengths, such upper bounds have already been investigated, for example, in [29]. Here
we limit the discussion to IR and focus on bounds that solely arise due to finite block
lengths (Sect. 2). We complement the bounds with a numerical study of achievable
leak values with LDPC codes (Sect. 5) and study some possible improvements and
open issues (Sect. 6).

2 Fundamental limits for one-way reconciliation

We consider one-way IR protocols, where Alice first computes a syndrome, M ∈ M,
from her raw key, Xn , and sends it to Bob who uses the syndrome together with his
own raw key, Yn , to construct an estimate X̂n of Xn . We will assume that X takes
values in a discrete alphabet while we allow Y to take values in the real line. We are
interested in the size of the syndrome (in bits), denoted log |M|, and the probability
of error, Pr[Xn �= X̂n]. In most contemporary security proofs, log |M| enters the
calculation of the key rate rather directly.2 More precisely, to achieve security it is
necessary (but not sufficient) that

� ≤ n − leakEC, (1)

where leakEC is the amount of information leaked to the eavesdropper during IR. Since
it is usually impossible to determine leakEC precisely, this term is often bounded as
leakEC ≤ log |M|. In the following, we are thus interested in finding lower bounds on
log |M|.

Let fXY be a probability density function. We say that an IR protocol is ε-correct
on fXY if it satisfies Pr[Xn �= X̂n] ≤ ε when Xn and Yn are distributed according to
( fXY )×n . Any such protocol (under weak conditions on fXY and for small ε) satisfies
1
n log |M| ≥ H(X |Y ) f [40]. Moreover, equality can be achieved for n → ∞ [37].
On first sight, it thus appears reasonable to compare the performance of a finite block
length protocol by comparing log |M| with its asymptotic limit. In fact, for the purpose
of numerical simulations, the amount of one-way communication from Alice to Bob
required to perform IR is usually approximated as leakEC ≈ ξ × nH(X |Y ) f , where
ξ > 1 is the reconciliation efficiency. The constant ξ is often chosen in the range

2 Recent works analyzing the finite block length behavior using this approximation include [1,5,7,17,24,
35,43].
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ξ = 1.05 to ξ = 1.2. However, this choice is scarcely motivated and independent of
the block length, the bit error rate and the required correctness considered.

Here, we argue that this approximation is unnecessarily rough in light of recent
progress in non-asymptotic information theory. Strassen [38] already observed in
the context of noisy channel coding that the asymptotic expansion of the funda-
mental limit for large n admits a Gaussian approximation. This approximation was
recently refined by Polyanskiy et al. [32] (see also [16]). The problem of information
reconciliation—also called source compression with side information—was investi-
gated by Hayashi [15] and recently by Tan and Kosut [40]. Here we go slightly beyond
this and provide bounds on the asymptotic expansion up to third order:

Theorem 1 Let 0 < ε < 1 and fXY arbitrary. Then, for large n, any ε-correct IR
protocol on fXY satisfies

log |M| ≥ nH(X |Y ) + √
nV (X |Y ) Φ−1(1 − ε) − 1

2
log n − O(1) .

Furthermore, there exists an ε-correct IR protocol with

log |M| ≤ nH(X |Y ) + √
nV (X |Y ) Φ−1(1 − ε) + 1

2
log n + O(1),

where Φ is the cumulative standard normal distribution,

H(X |Y ) := E

[
− log

fXY
fY

]
(2)

is the conditional entropy and

V (X |Y ) := Var

[
− log

fXY
fY

]
(3)

is the conditional entropy variance.

The proof uses standard techniques, namely Yassaee et al.’s achievability bounds
[50] and an analogue of the meta-converse [32]. Note that the gap of log n between
achievable and converse bounds for general distributions leaves room for improve-
ments. In channel coding, the gap is at most 1

2 log n, and constant for certain channels
(see, e.g., [2,39,45] for recent work on this topic).

We are in particular interested in two situations that typically appear in QKD.

2.1 Binary variable QKD

We first look at binary variable protocols, such as BB84 [4] or the 6-state protocol [6],
in the absence of an active eavesdropper. In this situation, the raw keys X and Y result
from measurements on a channel with independent quantum bit error rate Q. The
distribution (PQ

XY )n , that we call the binary–binary distribution, describes a typical
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manifestation of two random strings for which the expected bit error rate is Q. Here,
we (at least) require ε-correctness for the distribution

PQ
XY (0, 0) = PQ

XY (1, 1) = 1 − Q

2
, and

PQ
XY (0, 1) = PQ

XY (1, 0) = Q

2
. (4)

We show the following, specialized bounds:

Corollary 1 Let 0 < ε < 1 and let 0 < Q < 1
2 . Then, for large n, any ε-correct IR

protocol satisfies

log |M| ≥ ξ(n, ε; Q) × nh(Q) − 1

2
log n − O(1), (5)

where

ξ(n, ε; Q) := 1 + 1√
n

√
v(Q)

h(Q)
Φ−1(1 − ε).

Here, h(x) = −x log x − (1 − x) log(1 − x) and v(x) = x(1 − x) log2
(
x/(1 − x)

)
.

Furthermore, there exists an ε-correct IR protocol with log |M| ≤ ξ(n, ε; Q) ×
nh(Q) + 1

2 log n + O(1).

The proof of Eq. (5) follows by specializing Theorem 1 to the distribution PQ
XY .

Moreover, numerical simulations reveal that the approximation in Corollary 1 is
very accurate even for small values of n. More precisely, we find the following exact
bound:

log |M| ≥ nh(Q) +
(
n(1 − Q) − F−1

(
ε
(
1 + 1/

√
n
); n, 1 − Q

)
− 1

)
log

1 − Q

Q

−1

2
log n − log

1

ε
, (6)

where F−1( · ; n, p) is the inverse of the cumulative distribution function of the bino-
mial distribution. This bound can be evaluated numerically even for reasonably large n.

2.2 Continuous variable QKD

The second joint distribution of interest is the binary–Gaussian distribution:

fXY (x, y) = 1

2
√

2πσ 2
exp

(
− (x − y)2

2σ 2

)
, (7)

where x ∈ {−1, 1} and y ∈ R.
In the absence of an active eavesdropper, this distribution arises in continuous

variable QKD (CVQKD) with binary modulations [22,23] and can be induced in
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the classical postprocessing of CVQKD with Gaussian modulation [19,21]. For this
distribution, both the conditional entropy and the conditional entropy variance do not
have known closed form formulas. Abusing notation we denote them again by h(σ )

and v(σ ), respectively. The conditional entropy is known to be [20]:

h(σ ) =
∫ ∞

−∞
φσ (y) log(φσ (y))dy + 1

2
log(8πeσ 2), (8)

where

φσ (y) = 1√
8πσ 2

(
e− (y+1)2

2σ2 + e− (y−1)2

2σ2

)
.

The conditional entropy variance is easily found by applying Eq. (3)

v(σ ) = e(σ ) − h(σ )2, (9)

where

e(σ ) = 2
∫ ∞

−∞
fXY (1, y)

(
log

(
fXY (1, y)

fXY (1, y) + fXY (−1, y)

))2

.

These two integral forms can be solved numerically.
For this distribution, Theorem 1 yields the following bound:3

Corollary 2 Let 0 < ε < 1 and let σ > 0. Then, for large n, any ε-correct IR protocol
satisfies

log |M | ≥ ξ(n, ε; σ) × nh(σ ) − 1

2
log n − O(1), (10)

where

ξ(n, ε; σ) := 1 + 1√
n

√
v(σ )

h(σ )
Φ−1(1 − ε).

Furthermore, there exists an ε-correct IR protocol with log |M| ≤ ξ(n, ε; σ) ×
nh(σ ) + 1

2 log n + O(1).

3 Notation and definitions

For a finite alphabet X , we use P(X ) to denote the set of probability distributions on
X . When X is the real line, P(X ) denotes the set of distributions on the Borel sets
of the reals. A channel is a probabilistic kernel W : X → P(Y), and we use PW ∈
P(Y) to denote the output distribution resulting from applying W to P ∈ P(X ). We
employ the ε-hypothesis testing divergence as defined in [9,45]. Let ε ∈ (0, 1) and
let P, Q ∈ P(Z). We consider binary (probabilistic) hypothesis tests ξ : Z → [0, 1]
and define the ε-hypothesis testing divergence

Dε
h(P‖Q) := sup

{
R ∈ R

∣∣∣ ∃ ξ : EQ
[
ξ(Z)

] ≤ (1 − ε)e−R ∧ EP
[
ξ(Z)

] ≥ 1 − ε
}
.

3 We here apply Theorem 1 to distributions that are continuous inY . Note that the proofs leading to Theorem
1 can easily be generalized to this setting.
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Note that Dε
h(P‖Q) = − log β1−ε(P,Q)

1−ε
where βα is defined in Polyanskiy et al. [32].

It satisfies a data-processing inequality [49]

Dε
h(P‖Q) ≥ Dε

h(PW‖QW )

for all channels W from X to Y .
The following quantity, which characterizes the distribution of the log-likelihood

ratio and is known as the divergence spectrum [13], is sometimes easier to manipulate
and evaluate.

Dε
s (P‖Q) := sup

{
R ∈ R

∣∣∣∣ Pr
P

[
log

P

Q
≤ R

]
≤ ε

}
.

It is intimately related to the ε-hypothesis testing divergence. For any δ ∈ (0, 1−ε),
we have [41,45]

Dε
s (P‖Q) − log

1

1 − ε
≤ Dε

h(P‖Q) ≤ Dε+δ
s (P‖Q) + log

1 − ε

δ
. (11)

For a joint probability distribution PXY ∈ P(X × Y), we define the Shannon
conditional entropy

H(X |Y )P := E

[
− log

PXY (X,Y )

PY (Y )

]
=

∑

x∈X
y∈Y

PXY (x, y)

(
− log

PXY (x, y)

PY (y)

)
.

and its information variance

V (X |Y )P := Var
[

− log
PXY (X,Y )

PY (Y )

]

=
∑

x∈X
y∈Y

PXY (x, y)

(
− log

PXY (x, y)

PY (y)
− H(X |Y )P

)2

.

We also employ the min-entropy, which is defined as

Hmin(X |Y )P := − log pguess(X |Y )P ,

where pguess(X |Y )P := ∑
y∈Y maxx∈X PXY (x, y).

4 Proofs

4.1 One-shot converse bound for general codes

A general (probabilistic) one-way IR code for a finite alphabet X is a tuple {M, e, d}
consisting of a set of syndromes, M, an encoding channel e : X → P(M), and a
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decoding channel d : Y × M → P(X ). We say that a code is ε-correct on a joint
distribution PXY ∈ P(X × Y) if

Pr
PXY

[
X = d(Y, e(X))

] ≥ 1 − ε.

The converse for probabilistic protocols clearly implies the converse for protocols
where the encoder and decoder are deterministic as a special case.

We show the following one-shot lower bound on the size of the syndrome.

Proposition 1 Any ε-correct one-way IR code for PXY satisfies,

log |M| ≥ Hmin(X |Y )Q − Dε+δ
s

(
PXY

∥∥QXY
) + log δ,

for any δ ∈ (0, 1 − ε) and any QXY ∈ P(X × Y).

Proof Let PXYM X̂ be the distribution induced by PXY , M ← e(X) and X̂ ← d(Y, M).
Analogously, QXYM X̂ is induced by QXY ∈ P(X×Y), which we fix for the remainder.

We then consider the hypothesis test ξ(X, X̂) = 1{X = X̂} between PX X̂ and QX X̂ .
We find

EP [ξ(X, X̂)] = Pr
P

[X = X̂ ] ≥ 1 − ε

and
EQ[ξ(X, X̂)] = Pr

Q
[X = X̂ ] ≤ |M| pguess(X |Y )Q .

The first inequality holds by assumption that the code is ε-correct. The sec-
ond inequality follows from the fact that Pr[X = X̂ ] ≤ pguess(X |YM) ≤
pguess(X |Y ) |M|.

By definition of the ε-divergence and the min-entropy, we thus have

Dε
h(PX X̂‖QX X̂ ) ≥ Hmin(X |Y )Q − log |M| + log(1 − ε). (12)

Furthermore, Eq. (11) and the data-processing inequality with d and e yields

Dε+δ
s (PXY ‖QXY ) + log

1 − ε

δ
≥ Dε

h(PXY ‖QXY )

≥ Dε
h(PXYM‖QXYM )

≥ Dε
h(PX X̂‖QX X̂ ).

Finally, the statement follows by substituting Eq. (12) and solving for log |M|. ��
In the i.i.d. setting, it is sufficient to consider distributions of the form QXY =

UX × PY , where UX is the uniform distribution on X . The bound in Proposition 1
then simplifies to

log |M| ≥ log |X | − Dε+δ
s

(
PXY

∥∥UX × PY
) + log δ. (13)
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However, it is unclear whether choices of QXY that contain correlations between
X and Y or are not uniform on X are useful to derive tight bounds in the finite block
length regime.

4.2 Proof of Theorem 1

The problem of information reconciliation or source compression with side informa-
tion has been studied by many authors in classical information theory. Recent work
by Hayashi [15] as well as Tan and Kosut [40] considers the normal approximation of
this problem. Here, in analogy with [45], we go one step further and also look at the
logarithmic third-order term.

We consider the direct and converse parts of the theorem separately. Theorem 1 then
follows as an immediate corollary. We prove slightly more precise converse and direct
theorems by considering the special case where the information variance vanishes
separately. Note that the bounds are tight in third order for this special case, whereas
otherwise a gap of log n remains.

Theorem 2 (Converse for IR) Let0 < ε < 1and let PXY beaprobability distribution.
Any ε-correct one-way IR protocol on PXY satisfies the following bounds:

– If V (X |Y )P > 0, we have

log |M| ≥ nH(X |Y )P + √
nV (X |Y )P Φ−1(1 − ε) − 1

2
log n − O(1),

– If V (X |Y )P = 0, we have log |M| ≥ nH(X |Y )P + log(1 − ε).

Proof We consider an i.i.d. distribution (PXY )×n and use Proposition 1, more precisely
Eq. (13), to get

log |M| ≥ n log |X | − Dε+δ
s

(
(PXY )×n

∥∥(UX × PY )×n) + log δ

= −n sup

{
R ∈ R

∣∣∣∣ Pr

[
1

n

n∑

i=1

log
PXY (Xi ,Yi )

PY (Yi )
≤ R

]
≤ ε + δ

}
+ log δ

(14)

for any 0 < δ < 1 − ε. Note that we pulled log |X | into the information spectrum
to find (14). Next, observe that the random variables Zi = log PXY (Xi ,Yi )

PY (Yi )
follow an

i.i.d. distribution, and satisfy E[Zi ] = −H(X |Y )P and Var[Zi ] = V (X |Y )P . Let
us first consider the special case where V (X |Y )P = 0. This implies directly that
Zi = −H(X |Y )P with probability 1. Thus,

Pr

[
1

n

n∑

i=1

Zi ≤ R

]
=

{
0 if R < −H(X |Y )P

1 if R ≥ −H(X |Y )P
.

Hence, for any ξ > 0 and δ = 1 − ε − ξ , we find log |M| ≥ nH(X |Y )P + log(1 −
ε − ξ), proving the result in the limit ξ → 0.
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In the following, we may therefore assume that V (X |Y )P > 0, which allows for a
simple application of the Berry–Esseen theorem, which states that

∀R ∈ R :
∣∣∣∣∣
Pr

[
1

n

n∑

i=1

Zi ≤ R

]
− Φ

(√
n
R + H(X |Y )P√

V (X |Y )P

)∣∣∣∣∣
≤ B√

n
,

where

B := B0
T (X |Y )P

(√
V (X |Y )P

)3

and B0 ≤ 1
2 is a the Berry–Esseen constant [46] and T (X |Y )P := E

[∣∣ log PY
PXY

−
H(X |Y )P

∣∣3
]

< ∞ is the third moment of the information spectrum. Since 0 < B <

∞ is finite, we find

log |M| ≥ −n sup

{
R ∈ R

∣∣∣∣ Φ
(√

n
R + H(X |Y )P√

V (X |Y )P

)
≤ ε + B + 1√

n

}
− 1

2
log n

= nH(X |Y )P − √
nV (X |Y )P×sup

{
r ∈ R

∣∣∣∣ Φ(r)≤ε+ B+1√
n

}
− 1

2
log n

= nH(X |Y )P − √
nV (X |Y )P Φ−1

(
ε + B + 1√

n

)
− 1

2
log n .

Here, we chose δ = 1/
√
n, implicitly assuming that n > (B + 1)2(1 − ε)−2 is

sufficiently large. Since Φ−1 is continuously differentiable except at the boundaries,
there exists a constant γ such that

Φ−1
(
ε + B + 1√

n

)
≤ Φ−1(ε) + γ

B + 1√
n

.

Since V (X |Y )P < ∞, this then leads to the desired bound

log |M| ≥ nH(X |Y )P − √
nV (X |Y )P Φ−1(ε) − 1

2
log n

−γ

(
B0

T (X |Y )P

V (X |Y )P
+ √

V (X |Y )P

)
. (15)

��
The constant term in (15) can be simplified when ε < 1

2 and n > (B+1)2( 1
2 −ε)−2.

We get

log |M| ≥ nH(X |Y )P − √
nV (X |Y )P Φ−1(ε) − 1

2
log n

− 1

ϕ(Φ−1(ε))
× 3T (X |Y )P

2V (X |Y )P
,
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where we used that B0 ≤ 1
2 and

(√
V (X |Y )P

)3 ≤ T (X |Y )P . Moreover, we note that

the choice γ = d Φ−1

d ε

∣∣
ε

= 1
ϕ(Φ−1(ε))

is sufficient (and also necessary for large n) due

to concavity of Φ−1 on (0, 1
2 ). Here, ϕ(x) = d Φ

d x

∣∣
x = 1√

2π
exp

( − x2/2
)

denotes
the probability density function of the standard normal distribution. The constant term
behaves very badly for small ε, e.g., we find

1

ϕ
(
Φ−1

(
10−4

)) ≈ 2.5 × 103

for a typical value of ε. Nonetheless, the normal approximation in Theorem 2 is often
very accurate.

Theorem 3 (Achievability for IR) Let 0 < ε < 1 and let PXY be a probability
distribution. There exists an ε-correct one-way IRprotocolwith the following property:

– If V (X |Y )P > 0, we have

log |M| ≤ nH(X |Y )P + √
nV (X |Y )P Φ−1(1 − ε) + 1

2
log n + O(1).

– If V (X |Y )P = 0, we have log |M| ≤ nH(X |Y )P − log ε.

Proof We employ a one-shot achievability bound due to [50] (we use the variant in [3,
Corollary 12]), which, for every 0 < δ < ε, ensures the existence of an ε-correct
protocol with

log |M| ≤ n log |X | − Dε−δ
s

(
(PXY )×n

∥∥ (UX × PY )×n) − log δ + 1.

The remaining steps are exactly analogous to the steps taken in the proof of the converse
asymptotic expansion, and we omit them here. ��

4.3 Proof of Corollary 1

The corollary is a trivial specialization of Theorem 1, and it only remains to evaluate
H(X |Y )P and V (X |Y )P for the distribution in Eq. (4). We find

H(X |Y )P = −
∑

x,y

PXY (x, y) log
PXY (x, y)

PY (y)

= −Q log Q − (1 − Q) log(1 − Q) =: h(Q),
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and

V (X |Y )P =
∑

x,y

PXY (x, y)

(
log

PXY (x, y)

PY (y)
+ h(Q)

)2

= Q

(
(1 − Q) log Q − (1 − Q) log(1 − Q)

)2

+ (1 − Q)

(
Q log(1 − Q) − Q log Q

)2

= (
Q(1 − Q)2 + (1 − Q)Q2)( log Q − log(1 − Q)

)2

= Q(1 − Q)
(

log
Q

1 − Q

)2 =: v(Q).

4.4 Exact converse bound for (ε, Q)-correct codes

Let us state a more precise lower bound on log |M| that is valid for all n and can
be evaluated numerically for large n. This bound has the advantage that it does not
contain unspecified contributions of the form O(1). In particular, it does not suffer
from the problem of potentially large constant terms as discussed above.

Proposition 2 Let 0 < ε < 1 and let 0 < Q < 1
2 . Then, any (ε, Q)-correct one-way

error correction code on a block of length n satisfies

log |M| ≥ nh(Q) +
(
n(1 − Q) − F−1

(
ε
(
1 + 1/

√
n
); n, 1 − Q

)
− 1

)
log

1 − Q

Q

− 1

2
log n − log

1

ε
,

where F−1( · ; n, p) is the inverse of the cumulative distribution function of the bino-
mial distribution, i.e., F(k; n, p) := ∑k

�=0

(n
�

)
p�(1 − p)n−� and F−1(ε; n, p) :=

max{k ∈ N | F(k; n, p) ≤ ε}.

Proof We repeat Eq. (14), where we found

log |M| ≥ − sup

{
R ∈ R

∣∣∣∣ Pr

[ n∑

i=1

log
PXX ′(Xi , X ′

i )

UX ′(X ′
i )︸ ︷︷ ︸

=: Zi

≤ R

]
≤ ε + δ

}
+ log δ .

for any 0 < δ < 1 − ε. Here, we further used that PX ′ is uniform so that the random
variables Zi are of the simple form

Pr
P

[
Zi = log Q

] = Q and Pr
P

[
Zi = log(1 − Q)

] = 1 − Q .
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When Q �= 1
2 , we can rescale this into a Bernoulli trial:

Bi = (
Zi − log Q

) (
log

1 − Q

Q

)−1

.

Thus, by an appropriate change of variable, we get

log |M | ≥ −
(
n log Q + log

1 − Q

Q
× sup

{
k ∈ N

∣∣∣∣ Pr

[ n∑

i=1

Bi ≤ k

]
≤ ε + δ

})
+ log δ

= nh(Q)+
(
n(1−Q)−max

{
k∈N

∣∣∣ F(k−1; n, 1−Q)≤ε+δ
})

log
1 − Q

Q
+log δ

= nh(Q) +
(

min
{
k ∈ N

∣∣∣ F(k; n, Q) ≥ 1 − ε − δ
}

− nQ

)
log

1 − Q

Q
+ log δ.

(16)

The remaining optimizations over k and δ can be done numerically. Alternatively,
we are free to choose δ = ε√

n
in Eq. (16) to conclude the proof. ��

4.5 Proof of Corollary 2

In order to prove Corollary 2, we just need to evaluate the conditional entropy and
entropy variances for the binary–Gaussian distribution Eq. (7). For the sake of com-
pleteness, we do the explicit calculations. For the conditional entropy, we obtain

H(X |Y ) f = −
∫ ∞

−∞
dy

∑

x∈{−1,1}
fXY (x, y)

(
log

fXY (x, y)

fY (y)

)

= −
∫ ∞

−∞
dy

∑

x∈{−1,1}
fXY (x, y) (log fXY (x, y))

+
∫ ∞

−∞
dy fY (y) log ( fY (y)) . (17)

Let us expand separately the first term in Eq. (17):

∫ ∞

−∞
dy

∑

x∈{−1,1}
fXY (x, y) (log fXY (x, y))

=
∫ ∞

−∞

∑

x∈{−1,1}
dy

1√
8πσ 2

exp

(
− (x − y)2

2σ 2

) (
log

1√
8πσ 2

exp

(
− (x − y)2

2σ 2

))

=
∫ ∞

−∞

∑

x∈{−1,1}
dy

1√
8πσ 2

exp

(
− (x − y)2

2σ 2

) (
−1

2
log 8πσ 2 − (x − y)2

2σ 2 log e

)
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= −1

2
log 8πσ 2 − log e

2σ 2

∫ ∞

−∞

∑

x∈{−1,1}
dy

1√
8πσ 2

exp

(
− (x − y)2

2σ 2

)
(x − y)2

= −1

2
log 8πσ 2 − log e

2σ 2

∫ ∞

−∞
dy

1√
2πσ 2

exp

(
− y2

2σ 2

)
y2

= −1

2
log 8πσ 2e. (18)

The marginal on Y can be found to be:

fY (y) =
∑

x∈{−1,1}
fXY (x, y)

= 1√
8πσ 2

(
exp

(
− (y + 1)2

2σ 2

)
+ exp

(
− (y − 1)2

2σ 2

))
. (19)

It follows that H(X |Y ) f = h(σ ) by plugging Eq. (18) and (19) back into Eq. (17).
Now let us prove that the conditional entropy variance is given by Eq. (9).

V (X |Y ) f := Var

[
− log

fXY
fY

]

= E

[(
− log

fXY
fY

)2
]

−
(
E

[
− log

fXY
fY

])2

= E

[(
− log

fXY
fY

)2
]

− (h(σ ))2. (20)

We conclude by identifying the first term in the right hand side of Eq. (20) with
e(σ ):

E

[(
− log

fXY
fY

)2
]

=
∫ ∞

−∞
dy

∑

x∈{−1,1}
fXY (x, y)

(
− log

fXY (x, y)

fY (y)

)2

= 2
∫ ∞

−∞
dy fXY (1, y)

(
− log

fXY (1, y)

fY (y)

)2

,

where the last equality follows because fXY (1, y) = fXY (−1,−y).

5 Numerical results

As shown above, log |M| ≈ ξ(n, ε; · )nh( · ) is theoretically achievable for both
binary–binary and binary–Gaussian distributions, and optimal up to additive constants.
However, this implies that, for instance in the binary–binary case, the approximation
log |M| ≈ 1.1nh(Q) is provably too optimistic if ξ(n, ε; Q) > 1.1, e.g., for n ≤ 104,
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Q=2.5%, ε=10-2

Q=5.0%, ε=10-2

1
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n
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1.4

1.5
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Q

)

Q=5.0%, ε=10-2

Q=5.0%, ε=10-1

Fig. 1 Solid lines show the fundamental limit of the efficiency for the binary–binary distribution, ξ(n, ε; Q),
as a function of n for different values of Q and ε. The dotted lines show fits (see Table 1) to Eq. (21) for
simulated LDPC codes (marked with symbols)

Q ≥ 2.5%, and ε = 10−2. The function ξ( · , ε; Q) is plotted in Fig. 1 for different
values of ε and Q.

Moreover, theoretical achievability only ensures the existence of an information
reconciliation (error correcting) code without actually constructing it. In fact, it is
not known if efficient codes used in practical implementations can achieve the above
bound. Hence, the approximation given in Corollaries 1 and 2 is generally too opti-
mistic and must be checked against what can be achieved using state-of-the-art codes.

We suggest that practical information reconciliation codes for finite block lengths
should be benchmarked against the fundamental limit for that block length, and not
against the asymptotic limit. Moreover, we conjecture that, for some constants ξ1, ξ2 ≥
1 depending only on the coding scheme used, the leaked information due to information
reconciliation can be approximated well by

leakEC ≈ ξ1 × nh(Q) + ξ2 × √
nv(Q) Φ−1(1 − ε) (21)
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for a large range of n and Q (σ for binary–Gaussian distributions) as long as ε is
small enough. Here, ξ1 measures how well the code achieves the asymptotic limit
(first order) whereas ξ2 measures the second-order deficiency.

In the following, we test this conjecture against some state-of-the-art error correct-
ing codes (designed for the binary symmetric and additive white Gaussian channels,
BSC and AWGN, respectively). More precisely, we study several scenarios where
we fix two of the parameters in (21)—the failure probability ε, the block length n,
the leakage and the noise parameter—and explore the trade-off between the two free
parameters. In each scenario, we construct codes that verify the two fixed parameters
and fit ξ1 and ξ2 according to (21). For this numerical analysis, we have chosen
low-density parity-check (LDPC) codes following several recent implementations
[26,30,48].

We constructed two sets of LDPC codes with the progressive edge algorithm
(PEG) [18]. We constructed the first set of codes using the following degree poly-
nomials for the BSC:

λ1(x) = 0.1560x + 0.3482x2 + 0.1594x13 + 0.3364x14

λ2(x) = 0.1305x + 0.2892x2 + 0.1196x10 + 0.1837x12 + 0.2770x14

λ3(x) = 0.1209x + 0.2738x2 + 0.1151x5 + 0.2611x10 + 0.2291x14,

where λ1(x), λ2(x) and λ3(x) were designed for coding rates 0.6, 0.7 and 0.8, respec-
tively [8].

And we constructed the second set of codes using these polynomials for the AWGN
channel:

λ4(x) = 0.16988x + 0.29342x2 + 0.1633x6 + 0.15835x11 + 0.21505x28

λ5(x) = 0.13372x + 0.2689x2 + 0.00358x6 + 0.15093x7 + 0.01572x8

+ 0.04647x9 + 0.0001x10 + 0.00228x19 + 0.08615x24 + 0.02173x25

+ 0.27025x27 + 0.00017x29

λ6(x) = 0.10462x + 0.31534x2 + 0.26969x8 + 0.00933x19 + 0.02778x21

+ 0.00803x24 + 0.23115x26 + 0.03406x29

with code rates 0.6, 0.7 and 0.8, for λ4(x), λ5(x) and λ6(x), respectively.
Figures 3 and 4 show the block error rate as a function of Q (the crossover probability

in BSC) and SNR = 1/σ 2 (the signal-to-noise ratio in the AWGN) for codes with rates
0.6, 0.7, 0.8, and lengths 103, 104. The thick lines connect the simulated points, while
the dotted lines represent a fit following Eq. (21). (The fit values are shown in Table
1.) The fit perfectly reproduces the so-called waterfall region of the codes. However,
Eq. (21) drops sharply with Q for Q ∈ [0, 0.1] and with σ for σ ∈ [0, 4] while LDPC
codes experience an error floor. In this second region, the fit cannot approximate the
behavior of the codes.

In Fig. 1, we plot the function ξ(n, ε; Q) and the efficiency results obtained with
LDPC codes for reconciling strings following a binary–binary distribution. We chose
as representative lengths 103, 104, 105, and 106. For every block length, we constructed
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SNR=2.8, ε=10-1

Fig. 2 As in Fig. 1 the solid lines show the fundamental limit of the efficiency but for the binary–Gaussian
distribution, ξ(n, ε; σ), as a function of n for different signal-to-noise ratios (SNR) and ε values

0 0.02 0.04 0.06 0.08 0.1

Q

10-6

10-5

10-4

10-3

10-2

10-1

ε

Sum-product algorithm
Maximum 200 decoding iterations

R=0.6, n=103

R=0.6, n=104

R=0.7, n=103

R=0.7, n=104

R=0.8, n=103

R=0.8, n=104

Fig. 3 Simulated block error rates ε of LDPC codes of length n = 103 and n = 104 and code rates
R = 0.6, R = 0.7 and R = 0.8 as a function of quantum bit error rate Q

codes of rates 0.6, 0.7 and 0.8 following λ1(x), λ2(x), and λ3(x). The points in the
figure were obtained by puncturing and shortening the original codes [11,12] until the
desired block error rate was obtained. The results show an extra inefficiency due to the
use of real codes. This inefficiency shares strong similarities with the converse bound,
its separation from the asymptotic value is greater for lower values of Q, block error
rates and lengths and fades as these parameters increase. For example, for n = 104,
Q = 1.0% and ε = 10−2 the extra inefficiency due to the use of real codes is over 1.2,
while for n = 106, Q = 5.0% and ε = 10−1 the extra inefficiency is close to 1.05.

Similarly, in Fig. 2 we plot ξ(n, ε; σ) and the efficiency obtained with LDPC
codes when reconciling strings following binary–Gaussian distributions. Represen-
tative lengths were also chosen 103, 104 and 105. Codes of rates 0.6, 0.7, and 0.8,
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SNR

ε

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
10-6

10-5

10-4

10-3

10-2

10-1

1

Sum-product algorithm
Maximum 200 decoding iterations

R=0.6, n=103

R=0.6, n=104

R=0.7, n=103

R=0.7, n=104

R=0.8, n=103

R=0.8, n=104

Fig. 4 Simulated block error rates ε of LDPC codes of length n = 103 and n = 104 and code rates
R = 0.6, R = 0.7 and R = 0.8 as a function of SNR

Table 1 Values of ξ1 and ξ2 for
the fitted curves in Figs. 1, 3 and
5

n Q ε Leak ξ1 ξ2

– 0.010 10−2 – 1.13 3.82

– 0.025 10−2 – 1.07 3.71

– 0.050 10−2 – 1.06 3.54

– 0.050 10−1 – 1.05 2.41

103 – – 4 × 102 1.11 1.39

103 – – 3 × 102 1.12 1.45

103 – – 2 × 102 1.13 1.69

104 – – 4 × 103 1.07 1.41

104 – – 3 × 103 1.08 1.44

104 – – 2 × 103 1.11 1.89

103 0.015 – – 1.16 1.52

103 0.030 – – 1.16 1.31

104 0.025 – – 1.14 1.26

104 0.040 – – 1.07 1.58

following λ5(x), λ6(x) and λ7(x), respectively, were punctured until the desired block
error rate was obtained (ε = 10−1). As in Fig. 1, the results show an additional inef-
ficiency due to the use of real codes.

Finally, we address the design question posed above, that is, we study the efficiency
variation as a function of the block error rate for fixed n and noise parameter. We have
performed this study only for the binary–binary distribution for computational reasons,
but we expect similar results to hold for the binary–Gaussian. In this setting, we need
code constructions that allow to modulate the rate with fixed block length. The most
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Fig. 5 Ratio between the leakage and the asymptotical optimum in several scenarios as a function of the
block error rate ε. Subfigures a and b show results for block lengths 103 and 104, respectively. In each
subfigure, the solid lines show the converse bound from Corollary 1, while the dotted lines show the values
achieved with actual LDPC codes

natural modulating option would have been to construct codes for every n of interest
and augment [28] the codes, that is, eliminate some of the restrictions that the code
words verify. However, it is known that LDPC codes do not perform well under this
rate adaptation technique [47]. In consequence, we constructed a different code with
the PEG algorithm for every rate. In order to obtain a smooth efficiency curve, we
used the degree polynomials λ1(x), λ2(x) and λ3(x) for constructing all codes even
with coding rates different to the design rate.

Figure 5 shows the efficiency as a function of the block error rate. Each of the two
subfigures (a) and (b) shows the simulation results for codes of length 103 and 104,
respectively. Colors blue and red correspond to Q = 1.5% and 3.0% in subfigure
(a) and to 2.5% and 4.0% in subfigure (b). The solid lines show the bound given
by Corollary 1, similar to Fig. 1 we observe that, ceteris paribus, lower values of Q

123



 280 Page 20 of 23 M. Tomamichel et al.

Table 2 Values of ξ1 and ξ2 for
the fitted curves in Fig. 2 and
Fig. 4

n SNR ε Leak ξ1 ξ2

– 1.6 10−1 – 1.07 2.58

– 2.1 10−1 – 1.06 2.67

– 2.8 10−1 – 1.06 2.74

103 – – 4 × 102 1.11 1.23

103 – – 3 × 102 1.12 1.34

103 – – 2 × 102 1.13 1.40

104 – – 4 × 103 1.08 1.27

104 – – 3 × 103 1.07 1.42

104 – – 2 × 103 1.08 1.33

imply higher values of ξ . The points show values achieved by LDPC codes: each point
represents the block error rate of a different parity-check modulated code. Finally, the
dotted lines show the best least squares fit to Eq. 21, the values of ξ1 and ξ2 are given
in Table 1. From these curves, we can extract some useful design information, (1) if
the target failure probability is very high [26], then the gain obtained by increasing
the block length is modest; (2) if the target failure probability is low (below 10−4),
the leakage is over a fifty percent larger than the optimal one for moderate block
lengths; and (3) for block length 105, the largest length for which we could compute
simulations in the whole block error rate region, we were unable to consistently offer
efficiency values below 1.1 and furthermore we report no point with f below 1.05.

Tables 1 and 2 show the values of ξ1 and ξ2 used in Figs. 1, 2, 3, 4 and 5
respectively, to fit the data points obtained from the simulations. In these curves,
ξ1 is—independently of ε, n, Q, σ—in the range [1.05, 1.16], while the second-order
deficiency ξ2 is more sensible to the parameter variations. In the first four rows of
Table 1, that correspond to Fig. 1 with fixed Q and ε, ξ2 is in the range [2.41, 3.82],
for the middle six rows, that correspond to Fig. 3 with fixed n and leak, ξ2 is in the
range [1.49, 1.96], while for the last four rows, that correspond to Fig. 5 with fixed n
and Q, ξ2 is in the range [1.26, 1.58]. In the first three rows of Table 2, that correspond
to Fig. 2 with fixed σ and ε, ξ2 is in the range [2.58, 2.71], while in the last six rows,
that correspond to Fig. 4 with fixed n and leak, ξ2 is in the range [1.07, 1.42]. Note
that for each scenario, the averages in these ranges could safely be used for system
design purposes since necessarily codes with those ξ1 and ξ2 values or better exist.

6 Conclusion

In this paper, we studied the fundamental limits for one-way information reconciliation
in the finite key regime. These limits imply that a commonly used approximation for
the information leakage during information reconciliation is too optimistic for a range
of error rates and block lengths. We proposed a two-parameter approximation that
takes into account finite key effects.
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We compared the finite length limits with LDPC codes and found a consistent
range of achievable finite length efficiencies. These efficiencies should be of use to
the quantum key distribution systems designer. One question that we leave open is the
study of these values for different coding families.

Finally, it is clear that PE and PA also contribute to finite length losses in the QKD
key rate. While it seems possible to investigate fundamental limits in PA based on the
normal approximation of randomness extraction against quantum side information [41]
as a separate problem, we would in fact need to investigate it jointly with IR since
there is generally a trade-off between the two tasks that needs to be optimized over.
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