VNF Deployment and Service Automation to
Provide End-to-End Quantum Encryption

Alejandro Aguado, Victor Lopez, Jesus Martinez-Mateo, Momtchil Peev, Diego Lopez and Vicente Martin

Abstract—The nature of network services has drastically
changed in recent years. New demands require new capabil-
ities, forcing the infrastructure to dynamically adapt to new
scenarios. Novel network paradigms, such as software-defined
networking (SDN) and network functions virtualization (NFV),
have appeared to provide flexibility for network management
and services. The reliance on software and commoditized hard-
ware of these new paradigms introduce new security threats
and, consequently, one of the most desired capabilities is a
strengthened security layer when connecting remote premises.
On the other hand, traditional cryptographic protocols are
based on computational complexity assumptions. They rely on
certain mathematical problems (e.g. integer factorization, discrete
logarithm or elliptic curve) that cannot be efficiently solved
using conventional computing. This general assumption is being
revisited because of quantum computing. The creation of a
quantum computer would put these protocols at risk and force a
general overhaul of network security. Quantum Key Distribution
(QKD) is a novel technique for providing synchronized sources
of symmetric keys between two separated domains. Its security
is based on fundamental laws of quantum physics, which makes
impossible to copy the quantum states exchanged between both
endpoints. Therefore, if implemented properly, QKD generates
highly secure keys, immune to any algorithmic cryptanalysis. This
work proposes a node design to provide QKD-enhanced security
in end-to-end (E2E) services and analyze the control plane
requirements for service provisioning in transport networks. We
define and demonstrate the necessary workflows and protocol
extensions in different SDN scenarios, integrating the proposed
solution into a virtual router providing QKD-enhanced IPsec
sessions.

Index Terms—Quantum Key Distribution, Software Defined
Networking, MPLS, OpenFlow, NETCONF, Service Automation

I. INTRODUCTION

The network infrastructure is evolving from static, black-
boxed and monolithic approaches towards dynamic and open
solutions. Traditional services usually require several days
(or even weeks) to be established, while new applications
and services change their requirements much faster. This

This work has been partially supported by the Spanish Ministry of Economy
and Competitiveness, MINECO under grant CVQuCo, TEC2015-70406-R,
Comunidad Auténoma de Madrid, project Quantum Information Technologies
Madrid, QUITEMAD+ S2013/ICE-2801 and by ACINO European H2020
project, http://www.acino.eu, grant number 645127.

A. Aguado, J. Martinez-Mateo and V. Martin are with Center for Computa-
tional Simulation, Universidad Politecnica de Madrid, Campus Montegancedo,
28660 Boadilla del Monte, Madrid, Spain (e-mail: a.aguadom@fi.upm.es,
jmartinez@fi.upm.es, vicente@fi.upm.es).

V. Lopez and D. Lopez are with Telefonica GCTO, Ronda de la Comuni-
cacion s/n 28050 Madrid, Spain (e-mail: victor.lopezalvarez @telefonica.com,
diego.r.lopez@telefonica.com).

M. Peev is with Huawei Technologies Duesseldorf GmbH, Riesstrasse 25,
80992 Munchen, Germany (e-mail: momtchil.peev@huawei.com).

evolution, aiming to cope with this dynamicity, is based on the
development of different software paradigms, where multiple
functions, actions and operations that usually run internally in
a network device are abstracted and executed remotely as soft-
ware processes. One of these novel network paradigms, called
software defined networking (SDN) [1], permits decoupling
the control plane (control/management protocols and actions)
from the data (forwarding) plane. This separation allows to
dynamically manage network services and the infrastructure
from a logically centralized management entity, called SDN
controller. SDN copes with the changing behaviour of new
services, increasingly demanding more capacity together with
new capabilities, as they are developed and made available in
the market. One of the key demands is to have an enhanced
security layer at the network level, while keeping the current
infrastructure intact. Despite the behaviour of future network
services cannot be predicted, it is certain that communication
networks will remain the core to support the forthcoming
traffic. Therefore, securing this infrastructure is an increasing
concern, as critical information travels across an entire infras-
tructure. Up until now, network security has been achieved
with as a series of ad-hoc solutions. Today’s networks are more
complex and, especially with SDN, much more configurable.
The security risks are correspondingly larger and the security
in the network infrastructure must be enhanced.

QKD technologies [2], [3] allow to generate synchronized
random bits in two sources that are separated in space, with
the additional property that the maximum information leaked
out of these sources can be upper bounded i.e.: the random
bits can be used as a secret key. The security of the QKD-
produced keys is rooted on the physical layer and, therefore,
immune to any algorithmic cryptanalysis. QKD is a new
opportunity for operators and infrastructure providers as it can
bring an additional physical layer for securing control and
data communications. Authors in [4] demonstrated how QKD
is a suitable technology for securing control plane channels
by combining existing key exchange algorithms together with
quantum-generated keys in a hybrid cryptosystem. In this
work, we propose and demonstrate an scenario for combining
QKD systems to secure end-to-end (E2E) services between
remote premises. This paper extends the work done in [5]
where authors presented a proof of concept for keys synchro-
nization using a control plane emulation (OSPF, RSVP and
PCEP). The creation of connections using this approach is
called Quantum Encryption (QE) service. Here, we define,
implement and experimentally validate the QE service to
operate with Multi-Protocol Label Switching -MPLS- [6],
OpenFlow [1] and NETCONF [7]. The dynamic creation of

the QKD key synchronization operations together with the
E2E encrypted services is a key requirement for operators
to deploy these services in production networks. Current
service creation process (manually operated) does not meet the
operators needs for next generation networks. To the best of
the authors knowledge, this is the first work that demonstrates
the control plane configuration as well as the data plane setup
by instantiating two virtual network functions (VNFs) that
connect two remote virtual networks via QE service.

This work is organized as follows: Section II provides an
overview about current QKD technologies and networks, out-
lining the main benefits, challenges and restrictions; Section III
defines the virtual router structure, explaining which software
components and interfaces are used to provide the desired
encryption capabilities; Section IV describes the proposed
workflows for each protocol; Section V explains the required
extensions to make every workflow operation possible; Sec-
tion VI exposes the platform and the design of the testing
scenario; Section VII presents the results and captures of the
control plane traffic for each protocol and the traffic of the
final service; and Section VIII finally concludes the work.

II. QUANTUM KEY DISTRIBUTION NETWORKS

Quantum key distribution (QKD) [3] is a technology that
allows the growing of a symmetric key shared among the two
endpoints of a quantum channel. A quantum channel is the
physical media used to transmit the quantum signals -qubits-
. In our case it is the optical fiber. QKD also requires the
existence of a public but authenticated classical channel that
is used to distill the secret key out of the raw detections of
quantum signals. An initially small secret is assumed to be
shared among the two legitimate users in order to authenticate
themselves during the first communication. This is a short-
lived secret since afterwards the new communications rounds
can be authenticated using the QKD-produced keys. QKD keys
have the distinct advantage that they are not algorithmically
correlated in any sense thus keys obtained in different rounds
have no relation among them, and forward and backward
secrecy is guaranteed: an attacker that by some means obtains
one of the keys will be unable to derive any other. Under
reasonable assumptions -e.g. that no eavesdropper sits inside
the QKD device, that the protocols are executed correctly
and that the physical implementation is also correct- it can
be demonstrated to be absolutely secure. This means that the
amount of information on the secret key leaked outside the
systems is bounded and that the bound can be made arbitrarily
small. In another words, QKD is an Information Theoretical
Secure (ITS) Primitive. It is to be noted that the ITS character
is not necessarily inherited by the rest of the cryptographic
chain and that it depends on the methods used after the QKD
primitive have been used. For example, if AES is used to
cypher messages instead of a one-time pad, the result will not
be ITS, no matter if the keys used came from a QKD process
or not.

This is in contrast with conventional cryptography, where
the secrecy is based on algorithmic complexity assumptions.
These assumptions are not demonstrated and its security is

just based on the belief that nobody has been or will be
able to solve the mathematical problem, that guards the
security of the secret, within its desired life-time. Forward
and backward security is also not guaranteed, since secrets
are algorithmically related and their security is built upon the
assumptions that the mathematical problems cannot be broken
using the computational resources available.

Although this is the de-facto and well established way of
working that has served us well, the existence of algorithms
breaking the mathematical problems underlying the security of
RSA, Diffie-Hellman or Elliptic Curve Cryptography, cannot
be ruled out. In fact, it is the advent of quantum computers
and Shor’s algorithm what has triggered the obsolescence
process of these algorithms recommended by the US National
Security Agency [8] and the flurry of research activity in new
algorithms.

On the other hand, algorithmic complexity based crypto-
graphic protocols have the advantage of not being limited by a
physical implementation. QKD is intrinsically distance-limited
because qubits have a non-zero probability to interact with the
transport medium. Any signal propagating in a medium suffers
an exponential attenuation, being critical when the signals are
composed of a single quantum. Also, the interactions with
the environment are indistinguishable from the action of a
spy and errors must be treated as if they were the action
of an eavesdropper, thus heavily penalising the secret key
throughput. As a typical example, in the case of qubits and
optical fiber, losses are about 0.2 dB per km when the qubits
are encoded in photons at 1550 nm. QKD systems working
with maximum losses of about 30 dB have been demonstrated
and technology is reaching maturity quickly. This means that
todays practical limit in distance -not taking into account one
of a kind laboratory efforts- is about 150 km. Going to this
distance also means a strongly reduced secret key rate output.
Top performance figures are about 1Mbit of final secret key
at 40 km distance in direct links, without crossing any passive
network equipment that would increase losses. Other options,
better suited for network usage, are also being demonstrated.
Also, quantum repeaters [9] can be potentially built, but this
requires technology that may be years in the future.

QKD technologies have been demonstrated in metropolitan
area, in networks of exclusive use for the quantum part, that
run in parallel with the telecommunications network [10],
[11] and also exploring the capability to run in an integrated
way with conventional telecommunications networks [12],
[13]. The former ones emphasized the usage of different
QKD implementations working in a trusted node' regime to
allow key distribution and forwarding among any node within
the QKD network (and also to logically connect physically
incompatible devices). Within a trusted node, ITS mechanisms
(e.g. a simple XOR among the QKD keys generated pairwise
between directly connected nodes) can be used to forward
the keys and traverse the network to securely connect two
remote locations. The later ones emphasized direct switched
connections using as many off-the-shelf optical components as

I'System assumed to be protected under a security perimeter. This system
can be composed by multiple subsystems or devices (e.g. a host computer or
a QKD endpoint).

: : PCEP
MGmT : NBIs Openflow

West ! NETCONF

Internal

East
External

IPsec
Pre/postrouting & forwarding
IP routes

ETSI GS QKD 004 v1.1.1 SBIs
IDQ3P :

Fig. 1. Schematic view of the virtual router capabilities and interfaces

possible. It is the optical infrastructure of this later type [13]
what we have used in the present paper. In the last years, a
surge of interest in the technology has drawn the attention of
several companies and the availability of QKD devices from
different sources -an important issue in the security market-
seems larger and more promising than ever.

While the distance limit might currently seem an insur-
mountable one, in practice this is not such a problem in
metropolitan areas working with modern network paradigms
[14]. From a security point of view, SDN and NFV designs
mandate that network controllers and virtualized network
functions run in a protected environment. Thus, the important
figure here is the distance that separates the security perimeters
protecting the points of presence -trusted nodes- where the
controllers and VNFs are running. In a metropolitan area,
these are within present day QKD limitations and, thus, QKD
is a realistic technology in which to base a physical security
layer to protect the infrastructure and network services. From
a logical point of view, the QKD links can be seen as devices
that extend the security perimeter of the points of presence
to the optical fiber connecting them, thus making possible to
securely share keys among any connected node.

III. VIRTUAL ROUTER DESIGN

Network functions virtualization (NFV) [15], [16] paradigm
is also at its peak in terms of development and technological
advances for next generation networks. It uses concepts from
traditional computing virtualization to encapsulate functional-
ities from network devices into software instances. It allows
to dynamically allocate functions (such as firewalls, switches,
routers, deep packet inspectors, etc.) in distributed environ-
ments reducing time and costs in deploying new infrastruc-
tures. In this work, we propose the integration of basic routing
functions, together with IPsec point-to-point sessions using
QKD-generated keys, all automated via standard protocols.
Fig. 1 shows an example of the high-level structure of the VNF
design. It is divided in northbound, southbound interfaces and
core (forwarding):

o As a northbound interface (NBI), our solution provides
two different points of access: a management interface to
the NFV control framework and a second one connected
to the network controller (path computation element —
PCE- [17], SDN controller or NETCONF manager). The
first interface receives commands in order to control the
lifecycle of the VNF, as well as to provide connectivity to

Network
Controller
PCEP T Y:
Req/Resp/Initiate/Report'.." “... Flow_mod/Stats
(MPLS) - ™

. *.,, (Openflow)
" Flow_mod/Stats

Edit/Get_config (Openflow) Edit/Get_config
(NETCONF) “., (NETCONF)
% .
Device |, L TN e .| Device
Alice N Bob
RSVP Path/Resv

(MPLS)

Fig. 2. Generic view of control plane’s messages involved in QKD key
synchronization process

the system itself. The second one allows remote control
for network service management and automation via
network (SDN) controller.

o In the core of the node, we control the traffic from/to
our private network using ”ip route” and “iptables” rules.
For setting up IPsec sessions, we use an extension of the
ipsectools code to inject the keys extracted from the QKD
systems via PF_KEY key management API [18].

e As a southbound interfaces (SBI), the virtual node con-
nects to the QKD systems using an interface based on
[19]. This interface allows the node to specify a QoS for
the key session, and provides a unique session ID for key
extraction.

This virtual node is also composed by east-west (internal-
external) interfaces for packet forwarding in the data plane.
Upon deployment, the node runs the agent in charge of
communicating with the controller, for further configuration of
its core functionalities (forwarding and secure sessions) when
required.

IV. PROPOSED WORKFLOWS

As described in [5], the main operations in any workflow
for setting up a Quantum Encryption —QE— E2E service are:
capabilities dissemination, key synchronization and device
(service) configuration. Although any protocol must take care
of the same set of actions and finally deploy a similar configu-
ration, the different protocols fundamentally differ in the way
these actions are performed, as they were defined for different
purposes and use various collections of messages for their op-
erations. Fig. 2 shows a high-level example of the main control
plane instances and interactions among the entities involved
using the considered protocols. In this figure, we can see two
nodes (QE nodes) that have the capability of encrypting the
traffic using QKD generated keys, an intermediate network
(cloud) and a network controller. It is important to note that
any workflow could be initiated either via the controller’s
NBI or from the network device itself. This work mainly
focuses on the service deployment (key synchronization),
while the capabilities dissemination is demonstrated as a proof
of concept by sharing basic information (flags) between device
and controller. The main information to be transmitted is as
shown in table I, while the workflow description associated to
each protocol and the main differences among them, are as

TABLE I
PARAMETERS TO BE EXCHANGED BETWEEN DEVICE AND CONTROLLER FOR THE QE-SERVICE
Parameter Description
KeyID (Key_handle) An identifier used to synchronize QKD key sessions in separated endpoints
Key length Length of the key used to encrypt the current channel
Destination Other endpoint (remote peer) of the encrypted channel
Source Ingress node of the channel (only used in the request to the controller). For node configuration, destination (remote peer) is used.

Encryption layer

Layer in which the traffic is encrypted (e.g. Ethernet, IP)

Encryption algorithm

A value to specify the symmetric encryption algorithm

Refresh type

This value identifies the type of refresh considered to update the key (e.g. time, length)

Refresh value

This value specifies the amount considered for a given type used to refresh a key

PCE

3. No SessionID (=0)
4, Extract key and SessionID
5. Inject SessionID in ERO

7. sessionID found
8. Extrag; key
1.PCRequest (metrics) I

SDN Source
controller Agent

Destination
Agent

flow_mod (sessionID : ?, péer :dst.id)

barrier_request

barrier_response

flow_stats_req

Mandatory

Nodel Node5
SE - 2.PCReply(ERO[QE ERO so]) . QE
N 0,':? ’.,f)/ /;
oM VB < RN

Y & ’
2N % & A Node3 | g L,/ @
R L W &/
'%\ \\ (3 Q‘:’ //// KN) \\\ ‘% © ,II "?
SN N d NN~ N
\\ h| © 1 & ?P SN L b O
s (73 N
Node2 |/ & % Node4
Y A

Fig. 3. MPLS workflow for setting up a Quantum Encryption service

follows. An important issue in deploying VNFs is the mutual
authentication problem. In this work we do not deal explicitly
with this problem, but point out that it can be tackled in several
ways. One possibility, that we have used in several tests, is
to use the same toolkit that we integrated for the encryption
(ipsectools) and create new authentication rules for the IPsec
session (using, as an example, AH and hmac-md5) with keys
extracted from the QKD link.

A. MPLS protocol suite

Fig. 3 shows the workflow for synchronizing a QKD key and
setting up a QE service between two endpoints. Initially, both
nodes must expose their capabilities to the PCE via interior
gateway protocol (IGP). Regardless of whether the request is
initiated by an active PCE, a northbound application or from
the network node itself, the PCE will transmit the configuration
via PCEP message (Initiate or Response). Upon receipt, the
source node in the path detects that QE is required by checking
the explicit route object (ERO), and that the keyID is not
yet set, extracting a valid key and keyID pair from the QKD
system. The keyID is encapsulated and forwarded via RSVP
to reach the destination node. The destination node finds the
valid keyID (among other parameters), uses it to extract the
key for the secure E2E channel. The workflow finalizes when
the confirmation (RSVP Resv) arrives to the source node. The
workflow is compatible with the generalized version of the
protocol suite (GMPLS).

flow_stats_resp (sessionID : KID, peer : src.id)

Optional

flow_mod (sessionID : KID ,Epeer : dst.id)

barrier_request

Fig. 4. OpenFlow workflow and messages enabling the QE service

B. OpenFlow protocol

OpenFlow was designed as an enabler for SDN, allowing
remote management of the forwarding plane using a controller.
In that sense, OpenFlow differs from MPLS, as it was not
defined for device to device communications. The workflow
must change accordingly, as the key synchronization cannot
happen directly between devices, and it should be orchestrated
by the SDN controller. Fig. 4 shows the proposed workflow for
OpenFlow. Initially and similarly to MPLS, the devices should
expose the QE capabilities to the controller. Once this has been
done, the controller can create the service, regardless of who
initiated the request (packet_in message from the device, static
service/intent NBI request, etc.). The controller sends a flow
with a new action specifying the parameters for the encryption.
Within those parameters, the controller sends an unset keyID
to be detected and modified by the device. When the device
receives the flow, extracts the key and keyID pair from the
QKD system, and saves the ID with the flow information
that can be remotely accessed. The controller waits until the
key is extracted and the flow is installed using a barrier
request, retrieves the keyID from the device from the flow
statistics, and sends the same flow to the destination node
with an updated keyID. This process ends when the second
(destination) node installs the flow.

C. NETCONF

NETCONEF is a transactions-based protocol standardized by
IETF which provides access to network device configuration.

SDN
controller

Destination
Agent

Source
Agent

edit-config(key_handle : 0 ,-peer : dst.id, etc)

rpc-reply(ok)

get (config)

rpc-reply(key_handle : KID ; peer : src.id, etc)

edit-config(key_handle : KID , peer : dst.id, etc)

rpc—rep:)ly(ok)

Fig. 5. NETCONF workflow for QE service

The data transmitted using the NETCONF protocol is defined
using a modelling language called YANG, and usually encap-
sulated into XML data structures. The workflow in this case
is similar to the OpenFlow one (fig. 5), just differing in that it
is not necessary to wait until the configuration has finished, as
NETCONEF is transaction-based, and any misconfiguration or
error setting up the QE session (such as not available keys) will
reverse the whole set of instructions. In this way, the controller
will get the capabilities of the node from the hello message,
and then will send an edit-config command to the device with
an unset keyID. When the node finalizes its configuration, the
controller sends a get-config message to retrieve the keyID set
in the source node, sending a final edit-config to the destination
node with the valid keyID. As the key extraction from the
QKD system is part of the transaction, the source node will not
respond to the edit-config until the key is obtained (or return
an error if there are no available keys). When the response
reaches the controller, it can gather the key ID via get-config.

The key difference between workflows resides mainly be-
tween MPLS and OpenFlow/NETCONEF, as the actual deploy-
ment of the service (and, therefore, the key synchronization
process) is forwarded differently: directly between the network
nodes across the path or via network controller. OpenFlow and
NETCONEF just differ in the way the controller and devices
communicate for the key synchronization (transaction-based
SSH channel vs sequential OpenFlow commands synched
via barrier request). After the service deployment, dynamic
rekeying must be performed by the nodes. Updates over
the control plane could cause overheads in the management
network and the controller, which may be requested to handle
hundreds or thousands of requests per second, depending on
the number of services and the rekeying constraints of each of
them. In this sense, nodes should synchronize between them
for rekeying purposes, leaving service updates over the control
plane for some specific situations (routing changes, issue
with insufficient keys available, change on the service level
agreements, etc.). The work shown in [20], which describes
a protocol and method for synchronizing QKD keys in IPsec
sessions, is a solution that could be integrated to support the
dynamic rekying after the service deployment operations.

V. PROTOCOL REQUIREMENTS

The workflows described in section III require various
protocol extensions and information models to be defined.
The proposed solutions will mainly focus on the mechanism
for key synchronization and the transmission of the basic
data used for the encrypted channel. Additionally, we will
propose some extensions to include the new device capabilities
into these protocols, to make the controller aware of which
nodes do support these services. The main purpose of the
dissemination is to expose the QE capabilities (for simplicity,
as a single bit). Once this is done, adding further capabilities
(e.g. supported algorithms, encryption layers, etc.) is easy,
although they are out of the scope of this paper and left aside
for simplicity.

A. MPLS Protocol suite

1) Device Capabilities: The MPLS protocol suite pro-
vides various solutions for exchanging topological informa-
tion, depending on whether the information is shared inter-
nally (interior gateway protocol-IGP) or externally (border
gateway protocol-BGP). Within the IGP, we have chosen
the open-shortest path first (OSPF) protocol to include the
QE capabilities, utilizing the extensions to advertise optional
router capabilities defined in the RFC7770 [21]. The router
informational capabilities TLV contains 4 bytes exposing the
optional capabilities, where the bits 6-31 remain unassigned.
The QE-enabled nodes will use the seventh bit to expose to
other nodes and the PCE its new capability. When the OSPF
message arrives, the PCE will store this capability in its traffic
engineering database.

2) Key synchronization and service configuration: For ini-
tiating the deployment, the PCE has to receive a request
that might come from different entities (the network device,
a northbound user, network management system (NMS) or
application, etc.). Independently of who initiated the request,
a PCEP request containing the encryption requirements must
be transmitted, as these requirements are encapsulated in new
metric objects (used later by the PCE). The transmitted metrics
in our case are: encryption layer, encryption algorithm, key
length and refresh type and value. Upon receipt, the PCE
will compute the required path, including the main parameters
extracted from the metrics and an unset keyID inside a new
QE Explicit Route Object (ERO) subobject (as explained in
[5]). These new subobjects must be located after the nodes that
are required to encrypt the traffic. The ERO is either returned
as a response to whom requested the path, or as an initiate
message to the source device in the path. The remaining part
of the workflow does not require any additional extensions,
apart from the manipulation done by the source node in order
to inject the valid keyID. This insertion is done inside the
QE ERO subobject placed after the destination device of the
encrypted path.

B. OpenFlow Protocol

1) Device Capabilities: Similarly as in the MPLS sce-
nario, it is intended to expose the QE capabilities in a basic

manner. For this purpose, we have included a single bit in
the features reply message, the QE-capable bit (17th bit),
within the capabilities field. As it will be explained below,
the extension for the flow configuration will consist of a
new action. Therefore, a new action could be added as well
inside the feature reply if desired. Further capabilities (layer
of encryption, algorithms, etc.) are left out of the scope, and
could be added later as featured actions/capabilities or as
new experimental messages. The SDN controller will identify,
when this message is processed, which nodes are capable
of performing a QE flow and proceed configuring the QE
service/intent.

2) Key synchronization and service configuration: An
OpenFlow rule is formed by a match/action pair (flow), used to
identify and modify the incoming packets in accordance to the
device’s internal flow table. When considering the possibility
of encrypting specific incoming packets, the same duple must
be considered to identify (match) the traffic and apply the
desired encryption to it (action). There is no need to modify or
extend the matching process inside the device, as OpenFlow
does support traffic matching for different layers. The main
addition required consists of a new action specifying what
to do (how to encrypt) with the incoming packets matched
by the QE flow. Specifically, we have defined a new action
(action type OFPAT13_QKD=0xFFFC), which contains the
keylID, key length, the destination (IPv4), encryption layer and
algorithms, and refresh type and value (if required) to be used
by the device. When the device receives the FLOW_MOD
OpenFlow message from the controller, it extracts a new
key and keyID pair from the QKD system (if the keyID is
unset), saving the valid keyID in the flow’s action field. The
synchronization process is handled by the SDN controller and
uses OpenFlow stats to retrieve the flow information (in this
particular case, to retrieve the keyID), but it does not require
additional extensions, as it includes the new action described
for the FLOW_MOD operation.

C. NETCONF

1) Device Capabilities: Two devices interacting via NET-
CONTF protocol, initiate their communications with a HELLO
message. This message includes all the YANG models (also
known as capabilities) supported by both ends. To enable
the deployment of the QE service, we have created a new
YANG model to configure the different parameters previously
mentioned. When the hello message is transmitted, it includes
a URL pointing the new YANG model to be used to encrypt an
end-to-end communication using QKD keys. The NETCONF
manager (controller), upon receipt, stores this capability on
its database to be used when required by administrators or
applications.

2) Key synchronization and service configuration: Due to
the flexibility that YANG and NETCONF provide to create
models for new capabilities and configurations, the required
work is much simpler than in the other protocols. To achieve
this goal, a new YANG model has been defined to include
all the parameters required for the QE service. These param-
eters are, as previously mentioned: a keyID, key length, the

destination (IPv4), encryption layer, algorithm, and a refresh
type and value (if necessary). The NETCONF server (device)
is the one in charge of retrieving and keeping the new QKD
keys and their IDs, being (the IDs) gathered by the manager
afterwards. No other extension is required, as the same model
is used to configure (edit-config) and gather (get-config) the
necessary information for the key synchronization.

VI. PLATFORM IMPLEMENTATION

To showcase the proposed scenario and extensions, we have
created a tool (DockerNet) on top of the Docker container
platform. This tool allows setting up virtual networks in
different servers, based on containers and virtual switches. The
containers deployed for this demonstration encapsulate differ-
ent functionalities that are used to create the service and are
connected in a distributed network, as shown in Fig. 6. The left
part of the network includes a remote data center (DC) network
providing database and web services, which are accessible
through a virtual router. This virtual router forwards internal
and external traffic (ip routes, tables and nating), allows to
create [Psec sessions to external endpoints. It connects to the
control plane using the protocols and extensions described in
sections IV and V. It has also access to the QKD domain
(Bob), as it is necessary to extract keys from the emulated
QKD system used to encrypt the IPsec channel. This domain
contains the network controller container (PCE, in the figure)
as well, connected to both virtual routers using the service
management network. The right part is analogous to the left.
It includes another virtual router with the same capabilities
as its left-side homologous, a QKD domain to provide keys
(Alice) and a local private domain, with different hosts that can
be accessed by end-users. Both networks are running inside
two servers in Telefonica’s laboratory. The QKD domains are
composed by IDQ containers (emulating IDQuantique Clavis2
systems) and ETSI proxy containers, providing an intermediate
interface (based on [19]) between applications and the QKD
domain.

The intermediate network comprises the physical infras-
tructure, connecting the data plane via carrier-grade IP and
optical devices. The IP routers are two MX240 routers and the
optical layer with four FSP3000 from ADVA. Both locations
are connected via a L3 VPN service as it is done for the
corporate services in Telefonica. Despite the QKD domain is
emulated (with symmetric keys stored in Linux containers),
the optical equipment used for this test has been previously
demonstrated to be capable of supporting a quantum channel
[12], [13]. The service management network is used for the
control plane communications, while the main management
network is used for controlling the virtualization tool (creating
the virtual networks). Any control/management channel is not
protected during these tests, but they could also support the
hybrid security scheme proposed in [4]. Any intermediate
(control or data) network is assumed to be pre-configured
before the service deployment.

VII. IMPLEMENTATION AND RESULTS

The implementation of the protocol extensions has been
carried out in two different ways. Each protocol has been

. Container
[o
= * |IPsec
DockerNet I I DockerNet
1 Main MGMT Network 1
[|
PCE !
IDQBob ETSI Proxy T‘“'l'x ETSI Proxy IDQAlice
I . | o—=
Service MGMT Network

Keys GMPLS

channel

Vrouter

IP/Optical Data Plane

GMPLS
channel

Keys

192.168.0.X

Vrouter

Fig. 6. Logical scheme describing the network used for the end-to-end quantum encryption service via IPsec. The left part shows the DC management and
data networks, with a QKD domain (Bob), and a virtual router connected to a PCE. The right part exposes the local network, connecting other virtual router
to the remote PCE, and other QKD domain (Alice). The intermediate area exposes the packet/optical network.

10.1.1.2 10.1.1.80 OpenFl.. Type: OFPT_HELLO Extended OpenFlow 1.3 Action
10.1.1.80 10.1.1.2 TCP 6633-+49377 [ACK] Seq=1 Ack=9 Wi Version: Type: Unknown (65532)

ersion: 1.3 (0x04 ;
10.1.1.80 10.1.1.2 OpenFl. Type: OFPT_HELLO Required Type: OFPT FE:\TURE; REpLy| Length: 80 Action before (flow_mod)
10.1.1.80 10.1.1.2 OpenFl.. Type: OFPT_FEATURES_REQUEST Lzsgéh' 32— = » Unknown action body. 0; ;; gg gg gg gg gé g; g; gg
10.1.1.2 10.1.1.80 OpenFl.. Type: OFPT_FEATURES_REPLY —— P2 C
10.1.1.80 10.1.1.2 OpenFl.. Type: OFPT_MULTIPART_REQUEST, OFPMP_PORT_DESC Transaction ID: 3276654093 B0QU0gaogt 00 gae e e oy oyge
10.1.1.80 10.1.1.2 OpenFl.. Type: OFPT_FLOW_MOD datapath_id: 0x00007 ..

1.1, 1.1, penFl. Type: _FLOW_ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
10.1.1.80 10.1.1.2 OpenFl.. Type: OFPT_BARRIER_REQUEST —— n_buffers: OFPC13_ 00 60 00 00 00 00 04 14 Action after (flow_stats)
10.1.1.2 10.1.1.80 OpenFl.. Type: OFPT_MULTIPART_REPLY, OFPMP_PORT_DESC n_tables: 10 QKD_ENABLED gp sg 00 00 00 00 £f fc 00 50 20 0a 01 01 o1 02
10.1.1.2 10.1.1.80 OpenFl.. Type: OFPT_BARRIER_REPLY auxiliary_id: @ 1<<16 03 01 00 00 00 3c d1 88 b2 9c 42 16 24 fa 03 ab
10.1.1.80 10.1.1.2 TCP 6633-+49377 [ACK] Seq=209 Ack=257 Win=30016 Len=0 Pad: 16640 86 0a 2f d1 58 50 3d d9 6a ef 7a 2c 3d c6 60 7d
10.1.1.80 10.1.1.2 OpenFl.. Type: OFPT_MULTIPART_REQUEST, OFPMP_FLOW » capabilities: gx%@} 53 10 db 99 75 8a 30 2e 53 ab de 7f 17 00 5e d4

. 50 26 88 a3 ed 4f 31 d6 4b 79 49 Of e0 58 ed 26
10.1.1.2 10.1.1.80 OpenFl.. Type: OFPT_MULTIPART_REPLY, OFPMP_FLOW Reserved: 0xdcabd120 A o o o o

Fig. 7. OpenFlow messages used for setting up a QE service

demonstrated in different emulation scenarios, showcasing
how the capabilities dissemination and the QKD key syn-
chronization workflow work. Furthermore, the MPLS solution
(based on Telefonica’s Netphony project [22]) has been also
encapsulated inside a container and deployed via DockerNet,
to demonstrate the integration of the proposed solution inside a
virtual router. The virtual routers provide connectivity between
two remote premises, giving access to remote web services
and databases. They also encrypt the traffic between both end-
points, creating IPsec tunnels using QKD keys extracted from
an emulated QKD link, all orchestrated from the control plane.
It is important to note that any of the QKD networks described
in section II (direct link or dark fiber, trusted-relay network,
with or without classical and quantum coexistence [10]-[13])
is a valid solution compatible with our demonstration, as long
as QKD keys are generated at both ends of the QE service
and made available for the virtual routers to secure the traffic.

Fig. 7 presents the capture for the OpenFlow workflow,
describing the necessary and extended messages to support
the use case. It includes the features_reply from the device
(containing the new capability), flow_mod from the controller
(with the new action), barrier request and response, and the
final statistics gathered via multipart_reply. Fig. 8 (left) shows
the QE capability inside the features reply, advertised as a
single bit, while the same figure (Fig. 8 right) exposes the

Fig. 8. a) QE capability inside OpenFlow features_reply message and b) new
action before and after the QKD Key ID extraction

new action and how the keyID (key_handle) is modified by
the device. This ID changes from an unset value (0x00..00)
to a valid ID, which is retrieved by the controller using the
flow_stats. The retrieved ID will be consequently sent by the
controller to the destination agent/device, which will take care
of extracting the key from the emulated QKD system on its
secure side.

The implementation for NETCONF has required the defini-
tion of a YANG model for the QE configuration. Fig. 9 shows
the proposed YANG model, including the parameters shown in
table 1. Despite the traffic capture for the NETCONF use case
is not shown (as the NETCONF messages are encrypted via
SSH), Fig. 10 shows the XML transmitted (edit-config) and
received (get-config) from and by the NETCONF manager.
It also shows the new capability exposed inside the hello
message (Fig. 10, bottom).

Initially the manager sends the QE information, with the
unset keyID. The NETCONF server (agent) receives this
information, extracts the key and keyID pair from the QKD
system, and stores the valid ID in the running data store. When
the manager has finished transferring the configuration, it
retrieves the keyID again from the devices using the get-config
message. To finalize, the manager must transmit the valid
keyID, together with the rest of parameters, to the destination

module gkd {
namespace "http://www.ccs.upm.es/ccsupm/qkd_service";
prefix qkd;

typedef kex_alg_type {
type uint16 {
range "0 ..

import ietf-inet-types {
prefix inet; 255";

import tailf-common {
prefix tailf;

description "Key exchange algorithm";

grouping pk_info {
leaf keylen {
type uintl6;

grouping ref_info {
leaf ref_type {
type uint8;

container enc_data {
tailf:callpoint gkde;

leaf configured {
type boolean; leaf enc_layer {

type uint8;

leaf ref_value {
type uint32;

container pk_enc {
uses pk_info;

}
leaf enc_algo { }
type uint8;

}

leaf dest {
type inet:ipv4-address;| }
mandatory true; grouping kex_info {

leaf kex_type {
mandatory true;
type uint8;

1

leaf refresh {
type boolean;

container ref_config {
uses ref_info;

leaf-list key_handle {
type uint64;
ordered-by user;

container kex {
uses kex_info; }

Fig. 9. YANG model for QE configuration

<edit-config>
<target>
<running/>
</target>
<config>
<enc_data xmlns="http://www.ccs.upm.es/ccsupm/gkd_service">
<pk_enc>
<keylen>32</keylen>
<enc_layer>3</enc_layer>
<enc_algo>3</enc_algo> .
</pk_enc> *
<dest>10.1.1.5</dest>
<refresh>true</refres
<ref_config>
<ref_type>3</ref_ty
<ref_value>1000</r¢
</ref_config>
<kex>
<kex_type>0</kex_ty

<dest>10.1.1.5</dest>
<refresh>true</refresh>
<ref_config>

<ref_type>3</ref_type>

<ref_value>1000</ref_value>
</ref_config>
<kex>

<kex_type>0</kex_type>
<key_handle>0</key <key_handle>6020658334670642944</
<key_handle>0</key <key_handle>1268013387407389465</
<key_handle>0</key » <key_handle>8790635421752259465</
<key_handle>0</key <key_handle>2720963847539867698</
<key_handle>0</key. — <key_handle>1736931681536023405</
<key_handle>0</key | ——— <key_handle>7039438363519783672</
<key_handle>0</key <key_handle>4506934932083904060</
<key_handle>0</key_ <key_handle>382662332900822377</k

</kex> </kex>
</enc_data> </enc_data>
</config>
</edit-config>

<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>http://www.ccs.upm.es/ccsupm/qkd_service</capabili
</capabilities>
<session-id>11</session-id>
</hello>

Fig. 10. NETCONF edit (left), get (right) config XML information and
capabilities within a hello message

10.1.1.1 10.1.1.200 PCEP 172 Path Computation Request (PCReq)
10.1.1.200 10.1.1.1 PCEP 308 Path Computation Reply (PCRep)

11.2.1.1 wila 2012 UbP 73 Source port: 43840 Destination
ilo 20 ila2 ilo 20 ila il UbP 106 Source port: 5323 Destination p
10.1.1.1 10.1.1.5 RSVP 308 PATH Message. SESSION: IPv4-LSP,
10.1.1.5 10.1.1.1 RSVP 144 RESV Message. SESSION: IPv4-LSP,

Fig. 11. Set of MPLS and key extraction messages exchanged during the QE
service deployment

METRIC object
Object Class: METRIC OBJECT (6)

METRIC object
Object Class: METRIC OBJECT (6)

0001 = Object Type: 1 0001 = Object Type: 1
» Flags » Flags
Object Length: 12 Object Length: 12
Reserved: 0 Reserved: @
» Flags: 0x80 » Flags: 0x80

Type: Unknown (255)
Metric Value: 32

Type: Unknown (252)
Metric Value: 1000

METRIC object
Object Class: METRIC OBJECT (6)

METRIC object
Object Class: METRIC OBJECT (6)

0001 = Object Type: 1 0001 = Object Type: 1
» Flags » Flags
Object Length: 12 Object Length: 12
Reserved: @ Reserved: 0
» Flags: 0x80 » Flags: 0x80

Type: Unknown (253)
Metric Value: 10

Type: Unknown (254)
Metric Value: 3

Fig. 12. Metrics sent inside the PCRequest message for the QE service.

device of the QE service.

The last demonstration includes the deployment of the QE
service utilizing the QKD keys for the encryption of an IPsec
tunnel. Fig. 11 shows the messages exchanged between a
PCE and both virtual routers across the service management
network. The service request is initiated from the virtual router
within the data center (point of presence) premises, sending a
path computation request to the PCE with the required metrics
(Fig. 12). The response from the PCE already includes the new
QE ERO subobject used to synchronize the QKD keys and
create the secure path. When the response reaches the source
node, it extracts the key and keyID pair from the emulated
QKD system (messages 3 and 4). The keyID is subsequently
included in the RSVP path message, by changing the unset
keyID within the ERO, as shown in Fig. 13. The configuration
finalizes when the source node receives the RSVP RESV
message back from the destination node.

Finally, Fig. 14 shows a traffic capture of one of the final
services accessed using the deployed IPsec tunnel. This service
is accessed from the local domain, going across the local
virtual router, the intermediate network and the data center
virtual router, reaching a database (Redis server). The capture

Before Nodel (PCReq)

00d0 00 00 01 08 0a 01 01 05
00c0 00 00 00 00 00 00 00 00
00f0 00 00 00 00 00 00 00 00
0100 00 00 00 00 00 00 00 00
0110 00 00 00 00 00 00 00 00
0120 03 e8 00 0a 05 30 00 10

QE ERO Subobject

20 00 67 4a 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 20 02 fc
00 04 00 00 0a 00 00 00

After Nodel (RSVP Path) 1

00b0 20 00 67 4a 26 76 85 ef ad 13 40 78 51 96 ee 0
00c0 6¢c 16 34 al 07 65 dd 1b 7a 80 9f 12 6a 45 8d @d
00d0 a4 bc 09 39 57 d1 2d 3e d@ ec 6a 87 18 16 48 95
00e@ 07 b8 c6 7e 3d 6d 1la 23 f5 8a 5d f4 df 39 96 52
00f0 7e 04 6f cl 00 20 02 fc ff e8 00 Qa 00 08 13 01

Fig. 13. QE ERO subobject change to signal the session ID.

DCNet_vR_public(a)ESP
Redis_DataBase (b)TCP
Local_vR_public(c)TCP
Local_vR_public(d)ESP

ESP (SPI=0x000003ea)
48026-6379 [PSH, ACK
6379-48026 [ACK] Seq
ESP (SPI=0x000003e9)

Local_vR_public
Local_vR_public
Redis_DataBase

DCNet_vR_public

a b . ¢ d
Nd]s..Zr(..)l;J... . () X () wa. ttrree (.)._..a}..
bi3ghis M8 X lWiik2.. $3..get. .x..$9.. topsecre!”” TR
udhear 2.Ke...#) «$6..sec ret.. Pte. ool sk LT
.PkX Lm e o +

Fig. 14. Traffic capture (DC virtual router) of the encrypted and open data
via IPsec

was taken inside the data center domain. Messages (a) and (b)
show the request, before and after passing through the virtual
router. (c) and (d) show the response, opened before traversing
the virtual router and encrypted afterwards.

VIII. CONCLUSION

QKD is a promising technology that brings an additional
physical layer to secure current network infrastructures. This
work proposes and demonstrates the required control plane
workflows and protocol extensions for the integration of QKD
keys into current network services. The key synchronization
process (together with other encryption parameters) required
for the subsequent encryption has been integrated in the
major control plane protocols: MPLS, OpenFlow and NET-
CONF/YANG. We also demonstrate the ease with which these
new systems can be integrated in novel network paradigms, by
integrating the QKD-generated keys in IPsec sessions. This
sessions are finally encapsulated inside VNFs automated via
the aforementioned control plane extensions.

IX. ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Economy and Competitiveness, MINECO under
grant CVQuCo, TEC2015-70406-R, Comunidad Auténoma de
Madrid, project Quantum Information Technologies Madrid,
QUITEMAD+ S2013/ICE-2801 and by ACINO European
H2020 project, http://www.acino.eu, grant number 645127.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69-74, March 2008.

[2] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptogra-
phy,” Rev. Mod. Phys., vol. 74, no. 1, pp. 145-195, Mar. 2002.

[3] V. Martin, J. Martinez-Mateo, and M. Peev, “Quantum key distribution,
introduction,” in Wiley Encyclopedia of Electrical and Electronics En-
gineering, 2017, pp. 1-17.

[4] A. Aguado, V. Lopez, J. Martinez-Mateo, T. Szyrkowiec, A. Autenrieth,
M. Peev, D. Lopez, and V. Martin, “Hybrid conventional and quantum
security for software defined and virtualized networks,” J. Opt. Commun.
Netw., vol. 9, no. 10, pp. 819-825, Oct 2017.

[5]1 A. Aguado, V. Lopez, J. Martinez-Mateo, M. Peev, D. Lopez, and
V. Martin, “GMPLS network control plane enabling quantum encryption
in end-to-end services,” in International Conference on Optical Network
Design and Modelling (Best Paper Award), 2017.

[6] E.Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching
architecture,” RFC 3031, 2001.

[71 R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
configuration protocol (netconf),” RFC 6241, 2011.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]
[18]
[19]
[20]

[21]

[22]

Information Assurance Directorate, National Security Agency/Central
Security Service, “Commercial national security algorithm suite and
quantum computing faq,” in MFQ U/O0/815099-15, January 2017.
H.-J. Briegel, W. Dur, J. Cirac, and P. Zoller, “Quantum repeaters: The
role of imperfect local operations in quantum communication,” Phys.
Rev. Lett., vol. 81, no. 26, p. 5932, 1998.

M. Peev et al. , “The SECOQC quantum key distribution network
in Vienna,” New J. Phys., vol. 11, no. 7, p. 075001, 2009. [Online].
Available: http://stacks.iop.org/1367-2630/11/i=7/a=075001

M. Sasaki et al., “Field test of quantum key distribution in the Tokyo
QKD Network,” Opt. Express, vol. 19, no. 11, pp. 10387-10409, 2011.
A. Ciurana, J. Martinez-Mateo, M. Peev, A. Poppe, N. Walenta,
H. Zbinden, and M. V., “Quantum metropolitan optical network based
on wavelength division multiplexing,” Optics Express, vol. 22, no. 2,
pp. 15761593, 2014.

D. Lancho, J. Martinez, D. Elkouss, M. Soto, and V. Martin, “QKD in
standard optical telecommunications networks,” in Quantum Communi-
cation and Quantum Networking, ser. Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications
Engineering. Springer Berlin Heidelberg, 2010, vol. 36, pp. 142-149.
T. Jimenez, V. Lopez, F. Jimenez, O. Gonzalez, and J. P. Fernandez,
“Techno-economic analysis of transmission technologies in low aggrega-
tion rings of metropolitan networks,” in Proc. Optical Fiber Conference
(OFC), 2017.

“Network functions virtualisation (nfv); architectural framework,” in
ETSI GS NFV 002 V1.2.1, 2014-12.

B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90-97, Feb 2015.

A. Farrel, J.-P. Vasseur, and J. Ash, “A path computation element (pce)-
based architecture,” RFC 4655, 2006.

D. McDonald, C. Metz, and B. Phan, “Pf_key key management api,
version 2,” RFC 2367, 1998.

“Quantum key distribution (qkd); application interface,” in ETSI GS
QKD 004 V1.1.1, 2010-12.

S. Marksteiner and O. Maurhart, “A protocol for synchronizing quantum-
derived keys in ipsec and its implementation,” 2015, pp. 35-40.

A. Lindem, N. Shen, J. Vasseur, R. Aggarwal, and S. Shaffer, “Exten-
sions to ospf for advertising optional router capabilities,” RFC 7770,
2016.

[Online], “Java library of networking protocols: PCEP, RSVP-TE,
OSPF, BGP-LS,” Available: https://github.com/telefonicaid/netphony-
network-protocols (Accessed January 31, 2017).

