
1

Quantum Cryptography Networks Supporting
Path Verification in Service Function Chains

A. Aguado, D. R. López, A. Pastor, V. López, J. P. Brito, M. Peev, A. Poppe, and V. Martı́n,

Abstract—Quantum Key Distribution is a physical tech-
nology that enables the secure generation of bit streams
(secret keys) in two separated locations. This technology is
designed to provide a solution for very secure (quantum-
safe) key agreement, which is nowadays at a risk due to
advances in quantum computing. The recent demonstration
of a QKD network in the metropolitan area of Madrid
shows how these networks can be deploy in current
production infrastructure by following existing networking
paradigms, such as Software-Defined Networking (SDN). In
particular, a three-node QKD network is implemented on
the metropolitan area network using existing infrastructure
and coexisting with other data and control services.

On the other hand, telecommunication networks are
drastically changing the way the services are architectured.
Users of the operator’s infrastructure are moving from tra-
ditional connectivity services (e.g. virtual private networks
-VPNs-) to a set of interconnected network functions, either
physical (PNF) or virtual (VNF), in the shape of service
functions chaining (SFC). However, SFC users do not have
a method to validate that the traffic flow is appropriately
forwarded across the nodes in the network, situation that
may lead to very critical security breaches (for example, a
security node or a firewall that is bypassed on the chain).
This work presents a method for validating ordered proof-
of-transit (OPoT) on top of the Madrid Quantum Network.
We first provide an general description of the QKD network
deployed in Madrid. Then, we describe an existing security
protocol for proof-of-transit in packet networks, analysing
its issues and vulnerabilities. Finally, this work presents a
protocol for alleviating the security breach found in this
work and for providing ordered proof-of-transit (OPoT) in
SFCs. Finally, an example of the real implementation is
shown, where nodes being part of the OPoT scheme are
provisioned with QKD-derived keys.

Index Terms—Proof of Transit, Quantum key distribu-
tion, Network virtualization, Software Defined Networks.

I. INTRODUCTION

A. Aguado, J. P. Brito and V. Martin are with Center for Com-
putational Simulation, Universidad Politecnica de Madrid, Campus
Montegancedo, 28660 Boadilla del Monte, Madrid, Spain (e-mail:
{a.aguadom, jp.brito, vicente}@fi.upm.es).

D. R. Lopez, A. Pastor and V. Lopez are with
Telefonica GCTO, Ronda de la Comunicacion s/n 28050
Madrid, Spain (e-mail: {diego.r.lopez, antonio.pastorperales,
victor.lopezalvarez}@telefonica.com).

M. Peev and A. Poppe are with Huawei Technologies Dues-
seldorf GmbH, Riesstrasse 25, 80992 Munchen, Germany (e-mail:
{momtchil.peev, andreas.poppe}@huawei.com).

Manuscript received August 14, 2018.

THE conventional data and control communication
channels within the telecommunication networks

are under risk due to the advances on computation.
Traditional cryptosystems, that tipically use public en-
cryption algorithms (in particular for secret key agree-
ment), are at risk due to developments in computing.
More specifically, the evolution of quantum computing
can compromise the existing cryptosystems, which base
their security in mathematical problems that, while are
assumed complex to solve in classical computing, are
easy in quantum computers. QKD is immune to this
threat [1], [2]. It allows to generate synchronized random
bits in two sources that are separated in space, with the
additional property that the maximum information leaked
out during the QKD process can be upper bounded.
This means that the random bits can be used as a
secret key. The security of the QKD keys is due to the
laws of quantum mechanics and, therefore, independent
of any computational assumption and immune to any
algorithmic cryptanalysis.

QKD is a new opportunity for operators as it brings
an additional physical layer for securing the communi-
cations infrastructure. The Madrid Quantum Network,
presented in [3], [4], is a new QKD network that dis-
tinguishes itself in using operational infrastructure and
carrier-grade optical devices to transport the quantum
channels together with multiple classical channels in a
shared quantum-classical infrastructure that is managed
and exploited through the SDN and NFV paradigms.
The network has been recently deployed in downtown
Madrid, across a metro area network. This network
acted as the main source for symmetric keys that were
used to secure control [5] and data [6], [7] channels,
demonstrating how QKD is a suitable technology for
securing the infrastructure and services by combining
existing key exchange algorithms together with quantum-
generated keys in a hybrid quantum and classical security
scheme.

Aside from the traditional control and data channels
describe above, the network architecture and the ser-
vices deployed on top are drastically changing, forc-
ing operators to evolve from traditional/legacy, non-
scalable networks towards new architectural solutions.
This evolution is powered mainly by three different
sources, first the development of new hardware devices



2

and the increased capacity of existing ones. Second,
the creation and re-definition of existing control plane
and routing protocols (e.g. segment-routing [8], key-
flow) and third, the evolution towards software-defined
and virtualized networking architectures. This progress
(specially SDN [9] and NFV [10]) allows to dynami-
cally allocate network resources per-user/service and on-
demand. However, the flexibility brought by the new
software networking trends also carry certain associated
vulnerabilities and implications. For instance, in a virtu-
alized environment, several functions might be deployed
in distributed locations for composing a service function
chain (SFC) [11]. Both control and data communications
must be appropriately secured, as any attempt to compro-
mise a virtual function or its behaviour can compromise
the entire infrastructure.

A wide-spread concern about virtualized network ele-
ments is related to traffic attestation. Any network device
deployed in a production network must be capable of
assessing if a specific traffic flow passes through it and
is correctly forwarded. If a node cannot guarantee this
capability, it will not be accepted for production de-
ployment. By progressively changing physical network
functions (PNFs) by virtual network functions (VNFs),
this task becomes harder. As the traffic traverses multiple
intermediate nodes (possibly, out of the control of the
VNF operator), it could eventually bypass a critical node
within the SFC (e.g. a firewall). In order to mitigate this
issue, a first-of-a-kind proof-of-transit technique [12] has
been developed within the IETF to verify if a packet
has traversed all the nodes within a path. By unique or
first-of-a-kind we mean that there is no similar approach
defined or available in previous studies. The closest
solution is also described in the very same document,
which implies a nested encryption scheme. This is com-
putationally costly for network elements and requires
more data to be transmitted per packet (higher overhead).
Other solutions have studied similar approaches using
mathematical theorems for networking purposes. An
example is described in [13], where authors implemented
a routing protocol based on residual number systems
(Chinese remainder theorem). Although very innovative,
this method does not focus on traffic attestation, as it
defines a low-consumption routing method based on
modular operations. The PoT approach originally defined
in [12], as we further describe in the next section, does
not verify order of the followed path, whilst also have
some vulnerabilities associated. These weaknesses could
potentially be exploited by a given attacker to bypass
nodes in the chain, opening security breaches (e.g. the
bypass of a firewall or security gateway). Symmetric key
encryption can be used as a way to enhance the existing
solution by securing and adding further capabilites, as it
is discussed below.

In this work, we propose a way to enhance the current
PoT scheme proposed in [12], by using symmetric key
encryption (potentially, one time pad -OTP- [14], but
could be any other algorithm) for ciphering or masking
the associated traffic’s metadata. Firstly, we provide an
overview of the Madrid Quantum Network (MQN), a real
QKD network deployed in Telefonica Spain’s production
facilities where the experiments were done. Then we
describe the existing technique for implementing PoT,
while we analyse the vulnerabilities of the scheme. Our
proposal not just solves these vulnerabilies within the
current model, but goes beyond by providing order to
the proof-of-transit scheme (OPoT) in an clean and
easy to implement way. These enhancements have been
presented by the authors of this paper in the IETF and are
currently being proposed as the way to implement order
in the solution presented at the IETF draft, replacing the
previous nested encryption proposal. Also, in order to
provide a practical demonstration of the highest possible
security (secure symmetric keys) and going beyond a
typical setting, we have implemented the solution over
the MQN. This allows to show how the solution can also
integrate well with less standard techniques. Using QKD
also allows to demonstrate a quantum-safe technique that
will survive in case of major algorithmic threats (e.g. the
one posed by quantum computers).

II. THE Madrid Quantum Network -MQN- FIELD
TRIAL

The Madrid Quantum Network (MQN) [3], [4] has
been recently deployed in a metropolitan area network
around Madrid city center. The network has three main
locations: Almagro (Telefónicas I+D laboratory shared
with Telefónica Spain PoP), Norte and Concepcion (both
are Telefónica Spain PoPs). The three nodes and the
three connections (three pairs of fibers) are part of
Telefónica Spain production network. The QKD systems
were developed by Huawei Research Center Germany
using continuous variables technology [15], [16], [17]
that is more resilient to noise from the classical channels
sharing the same fibre with the quantum channel. The
QKD network manage the key generation according to
SDN principles by switching the quantum states gener-
ated by the single transmitter to one of the both receivers.
This control by an SDN network was one of the design
targets of the Madrid Quantum Network testbed and a
requirement for quantum/classical network convergence.
Almagro hosts the QKD transmitter, while two QKD
receivers are distributed to Norte and Concepcion. The
connection go across other PoPs, where splices and
connectors in patch panels causes additional fiber losses.
Some general parameters of the links:

• Almagro-Norte: around 3.9km long with a loss of
6dB and a key generation capability -estimated from



3

the raw key- above 70kbps, with coexistence of 17
classical channels together with the quantum one in
the same (C) band. This limit was due to the number
of free slots available in the optical equipment, so
the number could be higher.

• Almagro-Concepcion: around 6.4km long with a
loss of ∼ 7dB. We artificially increased the dis-
tance/losses by adding a 20km fiber spool with 4dB
of loss. This was done also to increase the Raman
noise from the classical co-propagating channels
(i.e. a worst case situation for the transmission of
quantum signals). In this combined configuration
the key generation capability was above 20kbps,
with coexistence of quantum and classical channels.

• Norte-Concepcion: ∼ 7dB losses, carrying only
telecom channels (using the QKD network with a
multi-hop/virtual link).

Fig. 1. The QKD testbed in Madrid: Map view.

In Fig. 1, we show a map of the network, also
indicating the links with an approximation of the fibers
path. The actual deployment might not follow this short-
est path but a more complex and longer path due to
external restrictions. Although there is no direct quantum
link between Norte and Concepcion, the QKD keys
provided by a SDN-based QKD network management
(key management layer) over the trusted node Almagro
in a multihop scheme are used here i.e. we have here
a virtual QKD connection, as opposed to the direct,
physical, connections through a direct and uninterrupted
quantum channel.

The quantum channel is multiplexed together with
other classical (data and management). The maximum
number of co-propagated channels was 17, but this
restriction came not from the QKD devices, but from the
limited availability of the number of client ports in the
optical networking equipment (standard Huawei’s Optix
OSN 1800 systems) used to multiplex/demultiplex the
channels in the fibre.

III. EXISTING PROOF-OF-TRANSIT TECHNIQUE

The latest version of the PoT technique can be found
in [12], which is an IETF working group document
(WGD). In the next subsection we explain the general
concept, before going into the details of the existing
weaknesses of the scheme. The idea is to create a master
secret which can be disclosed only if all participants in
the scheme provide its share of the secret. In this sense,
the verification node will prove if all nodes involved in
a path (as show in Fig. 2) have provided its share to
reconstruct the secret. The mathematical concept behind
is the Shamir Secret Sharing (SSS) technique [18], which
is based in the fact that a polynomial of degree n − 1
(the secret) is uniquely determined when n interpolant
points of the polynomial (the shares) are known.

A. Description

The steps described in the IETF’s PoT WGD are as
follows:

• The first step is to create the scheme. An entity
(which could be a SDN controller) must create
it. This includes choosing a big prime number,
generating the two polynomials -P1(x) and P2(x)-
(for the given number of nodes in the path), se-
lecting the points for each node and generating
the (as defined in the WGD) Lagrange Polynomial
Constants (LPCs) per point. Lagrange polynomial
formalism is used throughout since once calculated
the basis, that is fixed for a set of abscissae,
the evaluation of the corresponding interpolation
polynomial is fast. The first polynomial is the secret
in the SSS scheme, while the second polynomial is
used for randomising the scheme, so that it can be
reutilised and not just for a single packet (for more
information refer to [12]).

• After this calculation, the entity (controller) sends
the computed PoT metadata (see Fig. 5 and related
explanations for details) to each node in the path.
This metadata will be stored by the node and used
when required over the PoT flow.

• For any incoming packet, the source node in the
path generates a random number between 0 and
the prime p. This random value (RND) is used as
the constant coefficient of the second polynomial.
This procedure is done to randomise the scheme per
packet, avoiding to regenerate the scheme for each
new packet of the flow.

• Any node i (including the source and destination
of the path) for a given packet j will perform the
same operation in order to update the cumulative
verification value (CML). At the first node, CML0

is consider zero, as it is the first node generating the



4

cumulative value.

CMLj
i = (P1(xi) + (P2(xi) +RNDj)) ∗ LPCi

+ CMLi−1 (mod p)

• The packets are sent between the nodes in the chain,
using the encapsulation defined by the in-situ OAM
datagrams [19]

• After updating the cumulative value with its own
share, the destination/verificator node compares the
cumulative value generated with the sum of the
master secret plus the random number RND:

CMLn == Secret+RND (mod p)

• If the verification succeeds, the verification node
removes the PoT header (metadata) from the packet
and forwards it to the next node (outside the path).

• If the verification fails, an action will be taken with
the packet based on predefined policies (e.g. drop
the packet).

Fig. 2. Example of network and PoT path.

This technique allows to verify that a traffic has gone
through a set of nodes within a path, but not the order
within the path. For this reason, the PoT WGD also
proposes using cumulative encryption technique, which
will require the verification node to synchronize sym-
metric keys with every node in the path. Furthermore,
the associated overhead per packet will be at least of the
number of bits of the symmetric secret key (e.g. 256 bits
if AES-256 is used), with the associated computational
complexity (and hardware requirements) needed for the
nested encryption and secret key creation (e.g. Diffie-
Hellmann, which is computationally costly).

Section 8 of the draft claims that the security from
the original SSS scheme (information theoretic secure
- ITS) can be inherited and that, in consequence, it is
impossible to break as long as some conditions are met:
the polynomial must of degree k for chains of k+1 nodes
and that the values used for the reconstruction are kept
secret by the nodes. Also, the draft mentions the number
of packets that can be validated by the scheme is similiar
to the prime number chosen. In the next subsection we
show that some of the assumptions are not valid, as a
given attacker could potentially break the scheme and
bypass a set of nodes by reading the OPoT packets

metadata [19] (in a mixture of what the draft calls inter-
node and inter-packets cryptanalisis). We evaluate the
current weaknesses of the SSS-based scheme (not the
nested encryption), to provide a better context for our
solution.

B. Vulnerabilities

Initially we will assume that two packets
(packet1, packet2) can be captured just after the
first node in the path. Let P1(xi) be the result of the
first polynomial for xi (point assigned to nodei), and
P2(xi) be the result of the second polynomial without
the constant part. Then let RNDj be the constant
part of the second polynomial for a given packetj and
CMLj

i be the cumulative value for a packetj after the
nodei. LPCi stands for Lagrange Polynomial Constant,
meaning the Lagrange basis polynomial constant for the
point xi. Both xi and LPCi must be kept secret. Then,
by capturing two packets we get:

CML1
1 = (P1(x1) + P2(x1) +RND1)

∗ LPC1 (mod p)

CML2
1 = (P1(x1) + P2(x1) +RND2)

∗ LPC1 (mod p)

from where

CML1
1 − CML2

1 (mod p)

= (RND1 −RND2) ∗ LPC1 (mod p)

and

LPC1 =
CML1

1 − CML2
1

RND1 −RND2
(mod p)

For a given node i the result will be:

CML1
i = (P1(xi) + P2(xi) +RND1)

∗ LPCi + CML1
i−1 (mod p)

CML2
i = (P1(xi) + P2(xi) +RND2)

∗ LPCi + CML2
i−1 (mod p)

from where(
(CML1

i − CML1
i−1)−

(CML2
i − CML2

i−1)
)
(mod p)

= (RND1 −RND2) ∗ LPCi (mod p)

LPC1,2
i =

(CML1
i − CML1

i−1)− (CML2
i − CML2

i−1)

RND1 −RND2
(mod p)



5

Where we use LPC1,2
i to mean the LPCi generated

by the captured packets 1 and 2. The LPCi value must
be unique, but we still don’t know the prime p used for
the module operation, making its calculation hard. If l,
2 < l < 10! is the number of LPCy,z

i ∈ Z, then we
could calculate (l − 1)! combinations of:

LPCy,z
i = LPCi +my,z ∗ p,my,z ∈ Z

LPCv,w
i = LPCi +mv,w ∗ p,mv,w ∈ Z

LPCy,z
i − LPCv,w

i = (my,z −mv,w) ∗ p

And then we can calculate (using the division results
that belong to the set of integers) the set:
{(m1,2−m1,3) ∗ p, ..., (m1,4−m3,7) ∗ p, ...}, (mk,l −

mr,s) ∈ Z
From where we could try to derive the prime (e.g.

m.c.d, decomposing several p and operating them to
verify if they fit). If the prime p is obtained, the PoT
schema is compromised and the rest of the demonstration
is as follows.
CMLj

i and RNDi are public (openly encapsulated
in the packet metadata). Therefore, assuming the traffic
could be tampered at any point (and p has been ob-
tained), we could calculate for a given setup of the PoT,
the set {LPC1, ..., LPCn−1} by tracing two different
packets (and their PoT metadata).

Let’s now assume that a third packet (packet3) tra-
verses the network. We will check if, by knowing
RND3, we could calculate CML3

j values. Although this
cannot be done in principle, since the calculation of the
random constant is done internally in the first node, we
can start calculating CML3

1:

CML1
1 = (P1(x1) + P2(x1) +RND1) ∗ LPC1

⇒ (P1(x1) + P2(x1)) ∗ LPC1

= CML1
1 − (RND1 ∗ LPC1)

CML3
1 = (P1(x1) + P2(x1) +RND3) ∗ LPC1

= (P1(x1) + P2(x1)) ∗ LPC1 +RND3 ∗ LPC1

= CML1
1 − (RND1 ∗ LPC1) +RND3 ∗ LPC1

= CML1
1 + (RND3 −RND1) ∗ LPC1

For a given node i the result will be:

(P1(xi) + P2(xi)) ∗ LPCi =

CML1
i − CML1

i−1 − (RND1 ∗ LPCi)

CML3
i =

= (P1(xi) + P2(xi) +RND3) ∗ LPCi + CML3
i−1

= (P1(xi) + P2(xi)) ∗ LPCi +RND3 ∗ LPCi+

+CML3
i−1

= CML1
i − CML1

i−1 − (RND1 ∗ LPCi)+

+RND3 ∗ LPCi + CML3
i−1

leading to:

CML3
i = CML1

i − CML1
i−1+ (1)

+(RND3 −RND1) ∗ LPCi + CML3
i−1

Then, by tracing the traffic before and after a single
network node i, we could bypass that node of the
PoT path by getting the packet, and calculating the
corresponding CMLnew−packet

i . If the information is
gathered at each hop of the path, we could also grow
the secret up to the n − 1 hop by getting the packet at
the first node, bypassing the whole path. For example,
using directly formula 1 on the second node produces:

CML3
2 = CML1

2 − CML1
1+

+(RND3 −RND1) ∗ LPC2 + CML3
1

since all the values are know, CML3
2 can be generated

and then node 3 can be bypassed. This could be then
grown for any node i. Note that these operations must
be also done (mod p). This assumes that the prime p
can be disclosed as initially shown.

To verify that such an attack is feasible under normal
conditions, where a low overhead is required, we gener-
ated different 32 bits prime numbers and their randomily
generated PoT schemas, including the two polynomials,
the points and the LPCi for each node in the path.
The simulation was implemented to capture the first
100.000 packets (out of a maximum of 232 packets),
failing if it did not find a valid solution (i.e. the prime
number and the attack for a given packet). In most of
them (above 85%) we could succesfully obtain the prime
number and replicating the schema (gathering packets
at any intermediate hop in the path). Further tests with
smaller prime numbers were executed, as it is shown in
the results section.

Incrementing the size of the prime number would
increase the complexity of disclosing enough data to
break the solution, but it will also increase the cost of
growing the secret and, more importantly, will require
to expand the PoT header for each packet, increasing
substantially the overhead.

Also, [12] proposes an alternative solution to include
order as a capability of the solution. This technique is
based on nested encryption to generate a secret using a



6

symmetric ciphering method (e.g. AES). As it is defined,
it is not just a complement to the existing proposal but
more a new solution itself, as it does not need a SSS
scheme to work in parallel. However, this also has some
associated drawbacks: it is computationally more costly,
it requires an additional overhead (at least the size of
the key 256 of control information per packet) and it
requires the node in charge of verification to securely
generate symmetric keys with all the nodes in the path.
For this last point, if keys are to be refreshed in a per
packet basis, it will require the validation node to keep
a continuous flow of secret keys with every node.

For this reason, we explored the possibility of inte-
grating symmetric encryption algorithms not replacing,
but working together with SSS scheme. This not just
mitigates the security issues that the current solution
contains, but can also be used to provide order to the
PoT verification scheme.

IV. PROPOSED ENHANCEMENT

The purpose of this section is to provide a detailed
description of the proposed solution extended to in-
clude order. Our technique enhances the solution in
[12] while being compatible with it. It utilises stan-
dard techniques from traditional symmetric encryption
algorithms and provides the flexibility to define mul-
tiple options/embodiments for providing different level
of assurance (LoA). The next subsection provides a
description and an example of our solution.

Fig. 3. High level view of the internal node steps for providing OPoT.

A. Description

To enhance the security of the existing solution, the
proposed technique combines the SSS scheme with
symmetric key encryption in a per-hop basis, securing
the SSS metadata on each hop. This addition also allows
to reduce the polynomials to only one, by keeping the
random number generation at the source node of the
path. Let us remark that our proposal is compatible with
the existing one, as both polynomials can be kept (and
also be exposed as a LoA capability). Note that the main
difference of maintaining the two polynomials against

using just one is to keep a constant coefficient (the secret)
different from zero, so either possibility (two or one
polynomials) is compatible with our proposal.

Fig. 3 shows a high level view of the internal logical
components of a network device performing the OPoT.
These components are divided in four steps (packet iden-
tification, decryption, SSS core, encryption). A detailed
view of the steps for any intermediate node (i) in the
path is as follows:

A The first step consists on the identification
of the packet and verifies if it matches a
routing/forwarding entry (in Fig. 3, from the
flow table) that is associated with the OPoT
mechanism. If so, it gathers the appropriate
symmetric keys (previously exchanged/agreed
with the previous nodes i− 1 and i+1 within
the path) from the key store and provides it to
step B and step D for the decryption/encryption
of the SSS metadata (CML and RND).

B The second step involves the disclosure of
the ciphered SSS metadata within the packets
header. When this process is finished and the
metadata is updated (with the valid open val-
ues) it is handled to step C.

C During this step the node updates the SSS
metadata by performing the very same recon-
struction as described in the previous section
using its own shares of the secret. This, as
previously mentioned, can be done either for
one:

CMLi = (f(xi) +RNDj) ∗ LPCi+

+CMLi−1 (mod p)

or two polynomials:

CMLi = (P1(xi) + (P2(xi) +RNDj))∗
∗LPCi + CMLi−1 (mod p)

D The final step will require to cipher the data
updated by the process in step C, using the
appropriate symmetric keys (previously ex-
changed/agreed with the previous node i + 1
within the path). After ciphering the SSS meta-
data, the node forwards the traffic to the net-
work, using the information from the forward-
ing/routing table (as done in any traditional
network).

It is important to note that the source and destination
node slightly differ on some of the steps described above;

• Source node: In Step A there is no need for iden-
tifying a symmetric key, as traffic comes with no
SSS header. In consequence, step B is not required.
Step C will also require the source node to generate



7

a random number (between zero and the prime
number) per packet. Step D works as defined before.

• Destination node: Step A and B works similarly
as in the general description, but there is no need
for gathering a next-node symmetric key (as it is
the destination node). In consequence, step D is
not required. Step C, apart from behaving as in the
general description, it verifies the generated data (if
the OPoT works) and removes the SSS metadata
from the packet’s header.

Fig. 4. High level view of the internal node components for providing
OPoT.

Fig. 4 shows in a higher level view how the meta-
data from the SSS is treated before and after passing
through the OPoT-enabled node. The proposed technique
is compatible with novel network paradigms: a SDN
controller could be the master entity in charge of creating
the SSS data (prime, polynomials, points, LPCs) and
deploying the OPoT path, while the solution is easily
integrable and suits particularly well in virtualized en-
vironments (NFV). In addition, different key exchange
techniques can be applied for providing keys at each
points, depending on the available resources and the LoA
associated with the traffic flow. For example, traditional
key exchange algorithms (e.g. Diffie-Hellman), post-
quantum algorithms or QKD could be used as the source
of symmetric keys. Which one to use would depend on
the available infrastructure (e.g. QKD modules, HSM
encryptors), the LoA agreed for the service or the
overhead acceptable for the traffic flow.

Fig. 5. Example of the scheme using a single polynomial combined
with the per-hop encryption.

In Fig. 5 we show in detail a simple execution us-
ing four nodes (n1, n2, n3, n4) performing the proposed
scheme. If a packet leaving the ingress node (n1) goes
to the third node (n3), bypassing one intermediate node

(n2), the values used for the calculation will be a
combination of cml and rnd, both XORed with the two
intermediate (and different) keys used between the first
and second nodes (n1, n2) and the second and third nodes
(n2, n3). The data used in the example are:

Prime number: p = 71
Polynomial: 61x3 + 55x2 + 10x with no constant

coefficient.
The nodes are given the values {xi, yi, lcci, p}
• n1 : {39, 67, 45, 71}
• n2 : {96, 69, 10, 71}
• n3 : {36, 53, 30, 71}
• n4 : {68, 25, 58, 71}
with no verification value, as the transmitted rndj will

be used for verification, for a given packet j. In the
figure, ecml and ernd stand respectively for encrypted
cml and rnd values. The nodes show the internal steps
involved in the OPoT for this specific path. The ingress
node (n1) generates the random value rnd to be used as
the constant coefficient of the polynomial (also named
rps, random polynomial secret), which is the secret. This
random value, (rnd = 12 in the example), is transmitted
with the packet and ciphered per hop. Each node in the
path decrypts the OPoT metadata, reconstructs its part
of the secret using its part of the share and the OPoT
packets metadata, ciphers the new values and transmits
them to the subsequent node in the path. The top part
of Fig. 5 shows the encryption of the OPoT metadata,
while the bottom part shows each nodes share and the
generated cml. The verification node (n4) finally checks
if cml == rnd (in this case, succeeding 12 == 12),
allowing the packet to be forwarded if the verification
succeeds.

B. Key Improvements/Capabilities

Our proposed solution, while being compatible with
the exiting proposal, brings some additional enhance-
ments. Both the enhancements and the maintained capa-
bilities are:

• The fundamental enhancement comes from the up-
grade on the security of the existing scheme. The
SSS metadata is ciphered per hop, avoiding that
any evesdropper gathers and analyses the data to
perform an attack similar to the one described
above.

• A second (but no less important) enhancement
is that our solution brings order to the solution.
If the packet is not correctly forwarded between
the nodes (e.g. it goes from the first to the third
node), the node receiving the packet won’t have
the corresponding key, so it will wrongly decrypt
the metadata, leading to a wrong construction of
the secret.



8

• It is compatible with the existing solution, so the
scheme can be randomised per packet.

• The first solution for reducing an attack is in-
creasing the size of the prime number, therefore
increasing the overhead. Our solution allows not to
increase the size of the prime number and, in this
sense, reduce the overhead of the solution.

• As mentioned above, our solution allows to simply
use a single polynomial, while being compatible
with the two polynomial approach of the existing
solution.

• In the IETF WGD [12], the proposal for ordered
PoT requires nested encryption. This solution needs
some computational capabilities. It also needs that
the final node has active key exchange systems
with all the other nodes in the path and brings an
overhead of at least the size of the key bits per
packet. Our solution does not have such compu-
tational complexity (a simple XOR operation can
be used) and the packet overhead is also reduced,
as there is no need to increase the key size for
increasing the security of the scheme.

• This solution can be complemented with different
LoA profiles, based on multiple variables:

– Size of the scheme (the size of the prime
number): Increasing this value may affect the
throughput, while keeping it small could be
suitable for low rate services. Smaller schemes
can be usable for more traffic, due to the
improvements of our proposal.

– Source of the symmetric keys: keys can be
generated from different sources,

C. Future Possibilities

We note, without going into details, that there are
approaches based on frequent key exchange, which
are completely unrelated to the method presented in
[12]. These are based on Message Authentication Code
(MAC) algorithms [20] that ensure the integrity and
the source of information of received messages. The
said algorithms are known to be secure if an adequate
frequency of exchange of secure key material is guaran-
teed. An extreme example of this class are MACs that
ensure Information Theoretically Secure (ITS) message
authentication [21] - ones that cannot be broken by any
cryptoanalytic method, provided that the key is changed
at every MAC application, they are absolutely secure,
i.e. they preserve the secrecy of the message and are
unforgeable by the adversary. The quality of the key
material generated by QKD is a very good approximation
to this requirement. It should be taken into account that
present and foreseeable QKD key generation rates are
insufficient for ITS MACs, if these would be applied to

every single packet. However, packets can be aggregated
in larger frames and ITS MACs can be applied to these,
provided the nodes possess a source of ITS key genera-
tion. Naturally such a strategy comes at the expense of
a loss of all packets in a frame (and the need of their
resending) when a MAC fails. Alternatively, however,
the application of non-ITS MACs can be used taking
into account a careful calibration of the key exchange
rate in order to meet a given security policy.

V. EXPERIMENTAL RESULTS

A. Brute force attack on the existing solution

The brute force attack results are summarized in
Figs. 6 and 7. In both graphs the x-axis shows the prime
number used for the demonstration.

The first graph (Fig. 6) shows the average number
of packets captured at each hop and used to break the
scheme, calculating the LPCs and the prime number.
The second graph (Fig. 7) shows similar information
but as the percentage of packets that are required to
be listened to break the scheme for different prime
numbers. The percentage is calculated by dividing the
average number of packets by the total amount of packets
assumed to be secured by the scheme (which is the prime
number used to generate the scheme).

These tests were executed 10 times for each scheme,
having 10 schemes for prime number amounting to a
total of 100 tests for each prime number. For example,
for the prime 1003161329, we run 100 tests with an
avarage of 34890 packets captured to break the scheme
(a minimum of 10058 and maximum of 71964 were
observed). The graphs also indicate that, even when the
required number of packets increases as we use bigger
primes, the growth in the average value for each prime
does not increase drastically (as fast as the prime number
is increased) and, in this sense, the calculated percentage
(average number of packet to break the system vs the
prime number).

Fig. 6. Average of number of packets required to break a 5 nodes
schema for a given prime number (x-axis).



9

Fig. 7. Percentage of packets required to break a 5 nodes schema for a
given prime number (average divided by the prime, which is assumed
to be the maximum number of packets to be secured by the PoT).

B. Demonstration over the Madrid QKD network

The experimental setup is composed by three PoP
distributed in Madrid’s production network, as described
in the previous section. At each location, our physical
testbed comprises:

• a QKD system (either a transmitter or receiver),
• a server that contains the SDN software for man-

aging the QKD systems and the key stores, the
software for the QKD system operation and the pro-
cesses implementing the OPoT solution (the nodes
that form the path and the controller), allocated in
separate virtual machines.

• a Huawei’s Optix OSN 1800 optical transmission
system aggregating data, control and quantum chan-
nels. These are completely off-the-shelf devices.

Our two network layers (the data and QKD) are shown
in Fig. 8. The lower layer shows the QKD domain. It
is composed by the three physical QKD systems, its
management software (internal, key stores and a SDN-
agent) and a SDN controller, physically located within
Almagro’s PoP. The SDN agents at each location can
communicate with the centralized controller via well-
defined information models and interfaces (RESTconf).
Through them, the controller is capable of deploying
and switching the physical QKD channels (Almagro-
Norte and Almagro-Concepcion), creating a virtual QKD
link using Almagro’s PoP as a secure key relay node,
and detecting, tracking and handling the incoming key-
consuming applications (in our case, the four nodes
performing the OPoT).

The upper layer (data) is composed by four nodes.
The path connecting the nodes starts in a process located
in Norte’s PoP. It transmits the data to the second
node/process, located in Almagro. From Almagro the
path goes to the process at Concepcion, which finally
closes the loop by sending back the data to a second
process located in Norte. In this way, we make sure

Fig. 8. Setup of the two logical layers within Madrid’s Quantum
network: the QKD layer (lower part) and the data, OPoT layer (upper
part).

that the applications consume keys from every (either
physical or virtual) QKD link. The implemented ap-
plication, selected only as a simple showcase, was the
transmission of raw messages simulating a chat within a
secure locations (the PoPs). Other, more significant use
cases, for example, the verification of a QKD key relay
(or virtual link) over a QKD network have been also
implemented.

The workflow for this demonstration is as follows:

• Initially, our source node needs to communicate
with the controller for requesting the deployment
of an OPoT flow/path. This request (as other mes-
sages in the workflow) has been implemented over
UDP datagrams. A more network-oriented approach
would be to implement the channel following SDN
standards (e.g. OpenFlow/NETCONF), while for
a quantum-safe communication between node and
controller a solution like [5] would be better suited.

• Upon request reception, the controller computes the
path (in our case, with no constrains from the source
node), selects a prime number, generates the two
polynomials/points/LPCs for the SSS reconstruction
and sends these values to every node in the path.
Note that we use the two polynomials scheme to
follow closely the IETF WGD proposal although,
as it was explained before, this is not mandatory.
For a given test, the data generated (randomly) by
the node was:
First polynomial:
3293992791x3 +3749031361x2 +2496180873x+
1507514772
Second polynomial:
3950162548x3 + 1479635150x2 + 3577848592x
Data to node1:



10

{App : 10, P1(x1) : 636367073,
P2(x1) : 2174438441, LPC1 : 3959207178,
prime : 4111484371, next : 172.16.0.100 5445,
encnext : true}
Data to node2:
{App : 10, P1(x2) : 560148219,
P2(x2) : 2288072367, LPC2 : 316268028,
prime : 4111484371, prev : 172.16.20.100 : 5445,
encprev : true, next : 172.16.40.100 : 5445,
encnext : True}
Data to node3:
{App : 10, P1(x3) : 360017364,
P2(x3) : 3757300196, LPC3 : 1065940351,
prime : 4111484371, prev : 172.16.0.100 : 5445,
encprev : true, next : 172.16.20.100 : 5446,
encnext : true}
Data to node4:
{App : 10, P1(x4) : 2088721923,
P2(x4) : 750885585, LPC4 : 2881553186,
prime : 4111484371, prev : 172.16.40.100 : 5445,
encprev : true, secret : 1507514772}
where App identifies the specific application/flow,
Pi(xj) is the calculated point for node j using the
polynomial i, LPCj is the Lagrange polynomial
constant for node j, prime is the prime number
chosen by the controller for the solution, prev
and next are the previous and next nodes in the
path, encx defines if the previous or next nodes
require encryption for the SSS metadata and secret
is the constant coefficient of the first polynomial,
following the standard IETF scheme and the SSS
algorithm.

• When the nodes receive the OPoT parameters, if
encryption is active, the node extracts the keys from
the QKD domain. At each request, the SDN con-
troller is informed by the local agents, so then the
controller knows which applications are connected
where and can monitor and allocate resources (con-
figuring each agent to reserve a pool of keys). In
Fig. 9 we show the flow of keys for each link used
to secure the OPoT metadata during this test.

• At this point, all the necessary configuration has
been sent to the nodes, so the OPoT scheme can be
used by the nodes.

• The source node, using the App value provided
by the controller (implemented for this specific
application), is able to send a message to the
destination node through the path which has been
already configured. This first message transmitted,
shown in Fig. 10, is ”hello, my friend”. The capture
also shows the OPoT encrypted metadata, i.e. ernd
and ecml.

• Fig.11 shows how the metadata is modified at
each node in order to cipher, modify and decrypt

Fig. 9. QKD keys used to secure the OPoT metadata for each hop.

the values to grow the secret, following the steps
described in the previous sections.

Fig. 10. OPoT packet captured after leaving the first node.

Fig. 11. Table exposing the keys, CML and RND values at each
node within the path for a given execution.

In the last stage, the verificator/destination node also
updates the CML value and finally checks if the cal-
culated (grown) value is the same as the secret plus the
random number for a given packet i.

CMLi
n = RNDi + Secret

In the implementation, a packet being non-compliant
with the scheme (i.e. not following the order, being mod-
ified at some point or skipping one or multiple nodes)



11

was directly dropped by the verificator. Nonetheless,
this solution is also suitable with traditional networking
schemes and policies, so other actions could be also
taken if the scheme fails on verifying the path.

The enhanced version shall not be very demanding in
terms of secret key updates. If the RND values are not
repeated for the same scheme and the random number
generation does not imply any additional security breach,
the secret masks can be reutilized by the network ele-
ments. In this sense, considering also the data provided
by section 4 in the draft, in a 32 bit scheme with 100
Gbps traffic chain, a scheme (set of polynomials) will
last for 22 seconds. Updating the masks every second
will mean 22 updates per a given PoT scheme, meaning
a secret key consumption of 64 bits per second (which
is negligible, based on the rates that can be provided by
modern QKD systems). The most demanding resource
would be the random number generation which, as an
example, for a given 10Gbps traffic service, assuming
a MTU of 1500, we will approximately have a total of
840.000 packets per second. This implies a maximum
generation of 27Mbps, which is multiplied by 10 for
100 Gbps services. Other quantum services, as quantum
random number generators [22], can be the source to
cope with this demand, being installed in commodity
data centers.

VI. FUTURE WORK

The next steps for this research can be divided in two.
The first would be from the standardization side, where
the OPoT enhancement is being proposed in the newest
version of the IETF draft. This may require further
work in terms of datagram (e.g. dynamic rekeying syn-
chronization for a given scheme using iOAM headers)
and control plane definitions (extensions on the current
version of the YANG models). The second will imply
further research on the security implications of the PoT
definition. This work is mainly focused on studying the
original assumptions of the PoT proposal, to demonstrate
that the scheme could be bypassed using far less packets
that initially stated. The attack is an illustrative example
to show that the scheme is not applicable for the amount
of data stated in the document. Additional performance
enhancements can be applied to the attack, as some
parts are currently based on a ”brute force” approach
(validating one to all), whilst some searchs and validation
could be parallelized.

In addition, the principles on which the MQN have
been developed, fundamentally related to Software-
Defined Networking, are being defined and standard-
ized within the European Telecommunications Stan-
dards Institute (ETSI), under the Industry Specification
Group on QKD. The model defined for abstraction
and management of QKD resources will require several

incremental iteractions to include further use cases and
broader parametrization, as the QKD technology itself is
developed and standardized.

VII. CONCLUSIONS

Quantum key distribution networks are the key mea-
sure for implementing quantum-safe communications.
This work presents a security use case that is imple-
mented on top of the recently deployed Madrid Quantum
Network. In the context of virtualized services and next
generation protocols, new techniques for verifying the
traffic path/flow are necessary for security and other
reasons (e.g. legal interception). This work analyzes the
IETF’s proposal for a proof-of-transit technique based
on Shamir’s Secret Sharing and its associates vulner-
abilities. We find that the security is lower than ex-
pected when using the standard method, and propose an
enhancement that avoids the associated security threats
while being compatible. The new scheme also provides
order, an important property to secure the network. This
improvement, based on symmetric encryption, is also
demonstrated using a state-of-the-art technique, QKD,
for providing secret keys and integrate them in the
system. The use over a non-standard infrastructure high-
lights the flexibility of the scheme and the fact that it can
be future-proofed even in the case of a major computing
breaktrough, like the availability of a quantum computer.
The findings presented in this work have been presented
at the IETF and have been promoted as the preferred
solution for ordered proof-of-transit [23]. The presented
technique is implemented over the first QKD network
deployed in a production environment and following
SDN principles.

ACKNOWLEDGMENT

The authors would like to thank the Spanish Min-
istry of Economy and Competitiveness, for the grant
CVQuCo, TEC2015-70406-R, FEDER-MINECO, the
Madrid’s regional government, Comunidad Autonoma de
Madrid, for the project Quantum Information Technolo-
gies Madrid, QUITEMAD+ S2013/ICE-2801, the FET
Flagship on Quantum Technologies, European Unions
Horizon 2020 research and innovation programme under
grant agreement No 820466: Continuous Variable Quan-
tum Communications (CiViQ) and the team of Transport
and IP Connectivity in Telefónica Spain for their support
to this activity.

REFERENCES

[1] E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical
challenges in quantum key distribution,” Npj Quantum
Information, vol. 2, p. 16025, 11 2016. [Online]. Available:
http://dx.doi.org/10.1038/npjqi.2016.25



12

[2] V. Martin, J. Martinez-Mateo, and M. Peev, “Introduction to
quantum key distribution,” in Wiley Encyclopedia of Electrical
and Electronics Engineering, 2017, pp. 1–17. [Online]. Available:
https://doi.org/10.1002/047134608X.W8354

[3] V. Martin, A. Aguado, P. Salas, A. Sanz, J. Brito, D. R.
Lopez, V. Lopez, A. Pastor, J. Folgueira, H. H. Brunner,
S. Bettelli, F. Fung, L. C. Comandar, D. Wang, A. Poppe, and
M. Peev, “The madrid quantum network: A quantum-classical
integrated infrastructure,” in OSA Advanced Photonics Congress
(AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED). Optical
Society of America, 2019, p. QtW3E.5. [Online]. Avail-
able: http://www.osapublishing.org/abstract.cfm?URI=Networks-
2019-QtW3E.5

[4] A. Aguado, V. Lopez, D. Lopez, M. Peev, A. Poppe, A. Pastor,
J. Folgueira, and V. Martin, “The engineering of software-defined
quantum key distribution networks,” IEEE Communications Mag-
azine, vol. 57, no. 7, pp. 20–26, July 2019.

[5] A. Aguado, V. Lopez, J. Martinez-Mateo, T. Szyrkowiec, A. Aut-
enrieth, M. Peev, D. Lopez, and V. Martin, “Hybrid conventional
and quantum security for software defined and virtualized net-
works,” J. Opt. Commun. Netw., vol. 9, no. 10, pp. 819–825, Oct
2017.

[6] A. Aguado, V. Lopez, J. Martinez-Mateo, M. Peev, D. Lopez,
and V. Martin, “Vpn service provisioning via virtual router
deployment and quantum key distribution,” in Proc. Optical Fiber
Conference (OFC), 2018.

[7] ——, “Virtual network function deployment and service
automation to provide end-to-end quantum encryption,” J. Opt.
Commun. Netw., vol. 10, no. 4, pp. 421–430, Apr 2018. [Online].
Available: http://jocn.osa.org/abstract.cfm?URI=jocn-10-4-421

[8] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski,
and R. Shakir, “Segment routing architecture,” RFC 8402, 2018.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: En-
abling innovation in campus networks,” SIGCOMM Comput.
Commun. Rev., vol. 38, no. 2, pp. 69–74, March 2008.

[10] “Network functions virtualisation (nfv); architectural frame-
work,” in ETSI GS NFV 002 V1.2.1, 2014-12.

[11] J. Halpern and C. Pignataro, “Service function chaining (sfc)
architecture,” RFC 7665, 2015.

[12] F. Brockners, S. Bhandari, S. Dara, C. Pignataro, J. Leddy,
S. Youell, D. Mozes, and T. Mizrahi, “Proof of transit,” draft-
ietf-sfc-proof-of-transit-00, 2018.

[13] M. Martinello, M. Ribeiro, R. de Oliveira, and R. de Angelis Vi-
toi, “Keyflow: a prototype for evolving SDN toward core network
fabrics,” Network, IEEE, vol. 28, no. 2, pp. 12–19, March 2014.

[14] F. Rubina, “One-time pad cryptography,” Cryptologia, 1996.
[15] F. Laudenbach, C. Pacher, C. F. Fung, A. Poppe, M. Peev,

B. Schrenk, M. Hentschel, P. Walther, and H. Hbel, “Continuous-
variable quantum key distribution with gaussian modulation –
the theory of practical implementations,” Advanced Quantum
Technologies, 2018.

[16] H. H. Brunner, L. C. Comandar, F. Karinou, S. Bettelli,
D. Hillerkuss, F. Fung, D. Wang, S. Mikroulis, Q. Yi,
M. Kuschnerov, A. Poppe, C. Xie, and M. Peev, “A low-
complexity heterodyne cv-qkd architecture,” in 2017 19th Inter-
national Conference on Transparent Optical Networks (ICTON),
July 2017, pp. 1–4.

[17] F. Karinou, H. H. Brunner, C. F. Fung, L. C. Comandar, S. Bet-
telli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang,
C. Xie, M. Peev, and A. Poppe, “Toward the integration of cv
quantum key distribution in deployed optical networks,” IEEE
Photonics Technology Letters, vol. 30, no. 7, pp. 650–653, April
2018.

[18] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, November 1979.

[19] F. Brockners, S. Bhandari, C. Pignataro, H. Gredler, J. Leddy,
S. Youell, T. Mizrahi, D. M. anf P. Lapukhov, R. Chang,
D. Bernier, and J. Lemon, “Data fields for in-situ oam,” draft-
ietf-ippm-ioam-data-05, 2019.

[20] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook
of Applied Cryptography. CRC Press, 1996.

[21] M. N. Wegman and J. L. Carter, J. Comput. Syst. Sci., vol. 22,
p. 265, 1981.

[22] M. Herrero-Collantes and J. C. Garcia-Escartin, “Quan-
tum random number generators,” Rev. Mod. Phys.,
vol. 89, p. 015004, Feb 2017. [Online]. Available:
https://link.aps.org/doi/10.1103/RevModPhys.89.015004

[23] F. Brockners, S. Bhandari, S. Dara, C. Pignataro, J. Leddy,
S. Youell, D. Mozes, T. Mizrahi, A. Aguado, and D. Lopez,
“Proof of transit,” draft-ietf-sfc-proof-of-transit-02, 2019.


