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1 Introduction

Quantum key distribution (QKD) [2,3] is a prime example of the interdisci-
plinary nature of quantum cryptography and the first application of quantum
science that matured into the realm of engineering and commercial develop-
ment. While the security of the generated key is intuitively guaranteed by the
laws of quantum mechanics, a precise analysis of the security requires tools
from both classical cryptography and information theory (see [4,5] for early
security proofs, see [6] for a comprehensive review). This is particularly rele-
vant when investigating the security of QKD in a practical setting where the
resources available to the honest parties are finite and the security analysis
consequently relies on non-asymptotic information theory.

In the following, we consider QKD protocols between two honest parties,
Alice and Bob, which can be partitioned into the following rough steps. In the
quantum phase, N physical systems are prepared, exchanged and measured by
Alice and Bob. In the parameter estimation (PE) phase, relevant parameters
describing the channel between Alice and Bob are estimated from correlations
measured in the quantum phase. If the estimated parameters do not allow
extraction of a secure key, the protocol aborts at this point. Otherwise, the re-
maining measurement data is condensed into two highly correlated bit strings
of length n in the sifting phase — the raw keys Xn for Alice and Y n for Bob [7].
We call n the block length and it is the quantity that is usually limited by
practical considerations (time interval between generated keys, amount of key
that has to be discarded in case Alice and Bob create different keys, hardware
restrictions). In the information reconciliation (IR) phase, Alice and Bob ex-
change classical information about Xn over a public channel in order for Bob
to compute an estimate X̂n of Xn. The confirmation (CO) phase ensures that
X̂n = Xn holds with high probability or aborts the protocol. Finally, in the
privacy amplification (PA) phase, Alice and Bob distill a shared secret key of
` bits from Xn and X̂n. We say that a protocol is secure if (up to some error
tolerance) both Alice and Bob hold an identical, uniform key that is indepen-
dent of the information gathered by an eavesdropper during the protocol, for
any eavesdropper with access to the quantum and the authenticated classical
channel.

The ratio `/N is constrained by the following effects: 1) Some measure-
ment results are published for PE and subsequently discarded. 2) The sifting
phase removes data that is not expected to be highly correlated, thus further
reducing the length n of the raw key. 3) Additional information about the
raw keys is leaked to the eavesdropper during the IR and CO phase. 4) To
remove correlations with the eavesdropper, Xn and X̂n need to be purged in
the PA phase, resulting in a shorter key. Some of these contributions vanish
asymptotically for large N while others approach fundamental limits.1

1 Consider, for example, BB84 with asymmetric basis choice [8] on a channel with quantum
bit error rate Q. There, contributions 1) and 2) vanish asymptotically while contributions
3) and 4) converge to h(Q).
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Modern tools allow to analyze QKD protocols that are secure against the
most general attacks. They provide lower bounds on the number of secure key
bits that can be extracted for a fixed block length, n. For the BB84 protocol,
such proofs are for example given in [9,10] and [11]. These proofs were sub-
sequently simplified to achieve better key rates in [12] and [13], respectively.
(See also [14] for a recent detailed proof.) All results have in common that the
key rate that can be achieved with finite resources is strictly smaller than the
asymptotic limit for large n— as one would intuitively expect.

We are concerned with a complementary question: Given a secure but
otherwise arbitrary QKD protocol for a fixed n, are there fundamental up-
per bounds on the length of the key that can be produced by this protocol?
Such bounds are of theoretical as well as practical interest since they provide
a benchmark against which contemporary implementations of QKD can be
measured. In the asymptotic regime of large block lengths, such upper bounds
have already been investigated, for example in [15]. Here we limit the discus-
sion to IR and focus on bounds that solely arise due to finite block lengths
(Sec. 2). We complement the bounds with a numerical study of achievable leak
values with LDPC codes (Sec. 5), and study some possible improvements and
open issues (Sec. 6).

2 Fundamental limits for one-way reconciliation

We consider one-way IR protocols, where Alice first computes a syndrome,
M ∈ M, from her raw key, Xn, and sends it to Bob who uses the syndrome
together with his own raw key, Y n, to construct an estimate X̂n of Xn. We
will assume that X takes values in a discrete alphabet while we allow Y to
take values in the real line. We are interested in the size of the syndrome (in
bits), denoted log |M|, and the probability of error, Pr[Xn 6= X̂n]. In most
contemporary security proofs log |M| enters the calculation of the key rate
rather directly.2 More precisely, to achieve security it is necessary (but not
sufficient) that

` ≤ n− leakEC , (1)

where leakEC is the amount of information leaked to the eavesdropper during
IR. Since it is usually impossible to determine leakEC precisely, this term is
often bounded as leakEC ≤ log |M|. In the following, we are thus interested
in finding lower bounds on log |M|.

Let fXY be a probability density function. We say that an IR protocol is ε-
correct on fXY if it satisfies Pr[Xn 6= X̂n] ≤ ε whenXn and Y n are distributed
according to (fXY )×n. Any such protocol (under weak conditions on fXY and
for small ε) satisfies 1

n log |M| ≥ H(X|Y )f [20]. Moreover, equality can be
achieved for n→∞ [21]. On first sight, it thus appears reasonable to compare

2 Recent works analyzing the finite block length behavior using this approximation in-
clude [9,16,12,13,17–19].



4 Marco Tomamichel

10
3

10
4

10
5

10
6

10
7

n

1

1.1

1.2

1.3

1.4

1.5

ξ(
n

,ε
,Q

)

10
3

10
4

10
5

10
6

10
7

n

1

1.1

1.2

1.3

1.4

1.5

ξ(
n

,ε
,Q

)

Q=1.0%, ε=10
2

Q=2.5%, ε=10
2

Q=5.0%, ε=10
2

10
3

10
4

10
5

10
6

10
7

n

1

1.1

1.2

1.3

1.4

1.5

ξ(
n

,ε
,Q

)

10
3

10
4

10
5

10
6

10
7

n

1

1.1

1.2

1.3

1.4

1.5

ξ(
n

,ε
,Q

)

Q=5.0%, ε=10
2

Q=5.0%, ε=10
1

Fig. 1 The solid lines show the fundamental limit of the efficiency for the binary-binary
distribution, ξ(n, ε;Q), as a function of n for different values of Q and ε. The dotted lines
show fits (see Table 1) to Eq. (21) for simulated LDPC codes (marked with symbols).

the performance of a finite block length protocol by comparing log |M| with
its asymptotic limit. In fact, for the purpose of numerical simulations, the
amount of one-way communication from Alice to Bob required to perform
IR is usually approximated as leakEC ≈ ξ · nH(X|Y )f , where ξ > 1 is the
reconciliation efficiency. The constant ξ is often chosen in the range ξ = 1.05
to ξ = 1.2. However, this choice is scarcely motivated and independent of the
block length, the bit error rate and the required correctness considered.

Here, we argue that this approximation is unnecessarily rough in light
of recent progress in non-asymptotic information theory. Strassen [22] already
observed in the context of noisy channel coding that the asymptotic expansion
of the fundamental limit for large n admits a Gaussian approximation. This
approximation was recently refined by Polyanskiy et al. [23] (see also [24]).
The problem of information reconciliation — also called source compression
with side information — was investigated by Hayashi [25] and recently by Tan
and Kosut [20]. Here we go slightly beyond this and provide bounds on the
asymptotic expansion up to third order:
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Fig. 2 As in Fig. 1 the solid lines show the fundamental limit of the efficiency but for the
binary-gaussian distribution, ξ(n, ε;σ), as a function of n for different signal-to-noise ratios
(SNR) and ε values.

Theorem 1 Let 0 < ε <1 and fXY arbitrary. Then, for large n, any ε-correct
IR protocol on fXY satisfies

log |M| ≥ nH(X|Y ) +
√
nV (X|Y )Φ−1(1− ε)− 1

2
log n−O(1) .

Furthermore, there exists an ε-correct IR protocol with

log |M| ≤ nH(X|Y ) +
√
nV (X|Y )Φ−1(1− ε) +

1

2
log n+O(1),

where Φ is the cumulative standard normal distribution,

H(X|Y ) := E
[
− log

fXY
fY

]
(2)

is the conditional entropy and

V (X|Y ) := Var

[
− log

fXY
fY

]
(3)

is the conditional entropy variance.

The proof uses standard techniques, namely Yassaee et al.’s achievability
bounds [26] and an analogue of the meta-converse [23]. Note that the gap of
log n between achievable and converse bounds for general distributions leaves
room for improvements. In channel coding, the gap is at most 1

2 log n, and
constant for certain channels (see, e.g., [27–29] for recent work on this topic).

We are in particular interested in two situations that typically appear in
QKD.
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2.1 Binary Variable QKD

We first look at binary variable protocols, such as BB84 [2] or the 6-state
protocol [30], in the absence of an active eavesdropper. In this situation, the
raw keys X and Y result from measurements on a channel with independent
quantum bit error rate Q. The distribution (PQXY )n, that we call the binary-
binary distribution, describes a typical manifestation of two random strings for
which the expected bit error rate is Q. Here, we (at least) require ε-correctness
for the distribution

PQXY (0, 0) = PQXY (1, 1) =
1−Q

2
, and

PQXY (0, 1) = PQXY (1, 0) =
Q

2
. (4)

We show the following, specialized bounds:

Corollary 1 Let 0 < ε < 1 and let 0 < Q < 1
2 . Then, for large n, any

ε-correct IR protocol satisfies

log |M| ≥ ξ(n, ε;Q) · nh(Q)− 1

2
log n−O(1), (5)

where

ξ(n, ε;Q) := 1 +
1√
n

√
v(Q)

h(Q)
Φ−1(1−ε).

Here, h(x) = −x log x− (1−x) log(1−x) and v(x) = x(1−x) log2
(
x/(1−

x)
)
. Furthermore, there exists an ε-correct IR protocol with log |M| ≤ ξ(n, ε;Q)·

nh(Q) + 1
2 log n+O(1).

The proof of Eq. (5) follows by specializing Theorem 1 to the distribution

PQXY .

Moreover, numerical simulations reveal that the approximation in Corol-
lary 1 is very accurate even for small values of n. More precisely, we find the
following exact bound:

log |M| ≥ nh(Q) +

(
n(1−Q)− F−1

(
ε
(
1 + 1/

√
n
)
;n, 1−Q

)
− 1

)
log

1−Q
Q

− 1

2
log n− log

1

ε
, (6)

where F−1( · ;n, p) is the inverse of the cumulative distribution function of
the binomial distribution. This bound can be evaluated numerically even for
reasonably large n.
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2.2 Continuous Variable QKD

The second joint distribution of interest is the binary-gaussian distribution:

fXY (x, y) =
1

2
√

2πσ2
exp

(
− (x− y)2

2σ2

)
(7)

where x ∈ {−1, 1} and y ∈ R.
In the absence of an active eavesdropper, this distribution arises in con-

tinuous variable QKD (CVQKD) with binary modulations [31,32] and can be
induced in the classical postprocessing of CVQKD with Gaussian modulation
[33,34]. For this distribution, both the conditional entropy and the conditional
entropy variance do not have known closed form formulas. Abusing notation
we denote them again by h(σ) and v(σ) respectively. The conditional entropy
is known to be [35]:

h(σ) =

∫ ∞
−∞

φσ(y) log(φσ(y))dy +
1

2
log(8πeσ2) (8)

where

φσ(y) =
1√

8πσ2

(
e−

(y+1)2

2σ2 + e−
(y−1)2

2σ2

)
The conditional entropy variance is easily found by applying Eq. (3)

v(σ) = e(σ)− h(σ)2 (9)

where

e(σ) = 2

∫ ∞
−∞

fXY (1, y)

(
log

(
fXY (1, y)

fXY (1, y) + fXY (−1, y)

))2

These two integral forms can be solved numerically.
For this distribution, Theorem 1 yields the following bound:3

Corollary 2 Let 0 < ε < 1 and let σ > 0. Then, for large n, any ε-correct IR
protocol satisfies

log |M | ≥ ξ(n, ε;σ) · nh(σ)− 1

2
log n−O(1), (10)

where

ξ(n, ε;σ) := 1 +
1√
n

√
v(σ)

h(σ)
Φ−1(1−ε).

Furthermore, there exists an ε-correct IR protocol with log |M| ≤ ξ(n, ε;σ) ·
nh(σ) + 1

2 log n+O(1).

3 We here apply Theorem 1 to distributions that are continuous in Y . Note that the proofs
leading to Theorem 1 can easily be generalized to this setting.
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3 Notation and Definitions

For a finite alphabet X , we use P(X ) to denote the set of probability distribu-
tions on X . When X is the real line P(X ) denotes the set of distributions on
the Borel sets of the reals. A channel is a probabilistic kernel W : X → P(Y)
and we use PW ∈ P(Y) to denote the output distribution resulting from ap-
plying W to P ∈ P(X ). We employ the ε-hypothesis testing divergence as
defined in [36,27]. Let ε ∈ (0, 1) and let P,Q ∈ P(Z). We consider binary
(probabilistic) hypothesis tests ξ : Z → [0, 1] and define the ε-hypothesis test-
ing divergence

Dε
h(P‖Q) := sup

{
R ∈ R

∣∣∣∃ ξ : EQ
[
ξ(Z)

]
≤ (1− ε)e−R ∧ EP

[
ξ(Z)

]
≥ 1− ε

}
.

Note that Dε
h(P‖Q) = − log β1−ε(P,Q)

1−ε where βα is defined in Polyanskiy et
al. [23]. It satisfies a data-processing inequality [37]

Dε
h(P‖Q) ≥ Dε

h(PW‖QW )

for all channels W from X to Y.
The following quantity, which characterizes the distribution of the log-

likelihood ratio and is known as the divergence spectrum [38], is sometimes
easier to manipulate and evaluate.

Dε
s(P‖Q) := sup

{
R ∈ R

∣∣∣∣ Pr
P

[
log

P

Q
≤ R

]
≤ ε
}
.

It is intimately related to the ε-hypothesis testing divergence. For any
δ ∈ (0, 1− ε), we have [27,39]

Dε
s(P‖Q)− log

1

1− ε
≤ Dε

h(P‖Q) ≤ Dε+δ
s (P‖Q) + log

1− ε
δ

. (11)

For a joint probability distribution PXY ∈ P(X×Y), we define the Shannon
conditional entropy

H(X|Y )P := E
[
− log

PXY (X,Y )

PY (Y )

]
=
∑
x∈X
y∈Y

PXY (x, y)

(
− log

PXY (x, y)

PY (y)

)
.

and its information variance

V (X|Y )P := Var
[
− log

PXY (X,Y )

PY (Y )

]
=
∑
x∈X
y∈Y

PXY (x, y)

(
− log

PXY (x, y)

PY (y)
−H(X|Y )P

)2

.

We also employ the min-entropy, which is defined as

Hmin(X|Y )P := − log pguess(X|Y )P ,

where pguess(X|Y )P :=
∑
y∈Y maxx∈X PXY (x, y).
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4 Proofs

4.1 One-Shot Converse Bound for General Codes

A general (probabilistic) one-way IR code for a finite alphabet X is a tuple
{M, e, d} consisting of a set of syndromes, M, an encoding channel e : X →
P(M), and a decoding channel d : Y ×M → P(X ). We say that a code is
ε-correct on a joint distribution PXY ∈ P(X × Y) if

Pr
PXY

[
X = d(Y, e(X))

]
≥ 1− ε.

The converse for probabilistic protocols clearly implies the converse for proto-
cols where the encoder and decoder are deterministic as a special case.

We show the following one-shot lower bound on the size of the syndrome.

Proposition 1 Any ε-correct one-way IR code for PXY satisfies,

log |M| ≥ Hmin(X|Y )Q −Dε+δ
s

(
PXY

∥∥QXY ) + log δ,

for any δ ∈ (0, 1− ε) and any QXY ∈ P(X × Y).

Proof Let PXYMX̂ be the distribution induced by PXY , M ← e(X) and X̂ ←
d(Y,M). Analogously, QXYMX̂ is induced by QXY ∈ P(X ×Y), which we fix

for the remainder. We then consider the hypothesis test ξ(X, X̂) = 1{X = X̂}
between PXX̂ and QXX̂ . We find

EP [ξ(X, X̂)] = Pr
P

[X = X̂] ≥ 1− ε

and

EQ[ξ(X, X̂)] = Pr
Q

[X = X̂] ≤ |M| pguess(X|Y )Q.

The first inequality holds by assumption that the code is ε-correct. The
second inequality follows from the fact that Pr[X = X̂] ≤ pguess(X|YM) ≤
pguess(X|Y ) |M|.

By definition of the ε-divergence and the min-entropy, we thus have

Dε
h(PXX̂‖QXX̂) ≥ Hmin(X|Y )Q − log |M|+ log(1− ε). (12)

Furthermore, Eq. (11) and the data-processing inequality with d and e
yields

Dε+δ
s (PXY ‖QXY ) + log

1− ε
δ
≥ Dε

h(PXY ‖QXY )

≥ Dε
h(PXYM‖QXYM )

≥ Dε
h(PXX̂‖QXX̂).

Finally, the statement follows by substituting Eq. (12) and solving for
log |M|.
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In the i.i.d. setting, it is sufficient to consider distributions of the form
QXY = UX × PY , where UX is the uniform distribution on X . The bound in
Prop. 1 then simplifies to

log |M| ≥ log |X | −Dε+δ
s

(
PXY

∥∥UX × PY ) + log δ. (13)

However, it is unclear whether choices of QXY that contain correlations
between X and Y or are not uniform on X are useful to derive tight bounds
in the finite block length regime.

4.2 Proof of Theorem 1

The problem of information reconciliation, or source compression with side
information has been studied by many authors in classical information theory.
Recent work by Hayashi [25] as well as Tan and Kosut [20] considers the
normal approximation of this problem. Here, in analogy with [27], we go one
step further and also look at the logarithmic third order term.

We consider the direct and converse parts of the theorem separately. The-
orem 1 then follows as an immediate corollary. We prove slightly more precise
converse and direct theorems by considering the special case where the infor-
mation variance vanishes separately. Note that the bounds are tight in third
order for this special case, whereas otherwise a gap of log n remains.

Theorem 2 (Converse for IR) Let 0 < ε < 1 and let PXY be a probability
distribution. Any ε-correct one-way IR protocol on PXY satisfies the following
bounds:

– If V (X|Y )P > 0, we have

log |M| ≥ nH(X|Y )P +
√
nV (X|Y )P Φ

−1(1− ε)− 1

2
log n−O(1),

– If V (X|Y )P = 0, we have log |M| ≥ nH(X|Y )P + log(1− ε).

Proof We consider an i.i.d. distribution (PXY )×n and use Prop. 1, more pre-
cisely Eq. (13), to get

log |M| ≥ n log |X | −Dε+δ
s

(
(PXY )×n

∥∥(UX × PY )×n
)

+ log δ

= −n sup

{
R ∈ R

∣∣∣∣∣ Pr

[
1

n

n∑
i=1

log
PXY (Xi, Yi)

PY (Yi)
≤ R

]
≤ ε+ δ

}
+ log δ

(14)

for any 0 < δ < 1−ε. Note that we pulled log |X | into the information spectrum

to find (14). Next, observe that the random variables Zi = log PXY (Xi,Yi)
PY (Yi)

follow an i.i.d. distribution, and satisfies E[Zi] = −H(X|Y )P and Var[Zi] =
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V (X|Y )P . Let us first consider the special case where V (X|Y )P = 0. This
implies directly that Zi = −H(X|Y )P with probability 1. Thus,

Pr

[
1

n

n∑
i=1

Zi ≤ R
]

=

{
0 if R < −H(X|Y )P

1 if R ≥ −H(X|Y )P
.

Hence, for any ξ > 0 and δ = 1 − ε − ξ, we find log |M| ≥ nH(X|Y )P +
log(1− ε− ξ), proving the result in the limit ξ → 0.

In the following, we may therefore assume that V (X|Y )P > 0, which allows
for a simple application of the Berry-Esseen theorem, which states that

∀R ∈ R :

∣∣∣∣∣Pr

[
1

n

n∑
i=1

Zi ≤ R
]
− Φ

(
√
n
R+H(X|Y )P√

V (X|Y )P

)∣∣∣∣∣ ≤ B√
n
,

where

B := B0
T (X|Y )P(√
V (X|Y )P

)3
and B0 ≤ 1

2 is a the Berry-Esseen constant [40] and T (X|Y )P := E
[∣∣ log PY

PXY
−

H(X|Y )P
∣∣3] < ∞ is the third moment of the information spectrum. Since

0 < B <∞ is finite, we find

log |M| ≥ −n sup

{
R ∈ R

∣∣∣∣∣Φ
(
√
n
R+H(X|Y )P√

V (X|Y )P

)
≤ ε+

B + 1√
n

}
− 1

2
log n

= nH(X|Y )P

−
√
nV (X|Y )P · sup

{
r ∈ R

∣∣∣∣Φ(r) ≤ ε+
B + 1√

n

}
− 1

2
log n

= nH(X|Y )P −
√
nV (X|Y )P Φ−1

(
ε+

B + 1√
n

)
− 1

2
log n .

Here, we chose δ = 1/
√
n, implicitly assuming that n > (B + 1)2(1 −

ε)−2 is sufficiently large. Since Φ−1 is continuously differentiable except at the
boundaries, there exists a constant γ such that

Φ−1
(
ε+

B + 1√
n

)
≤ Φ−1(ε) + γ

B + 1√
n
.

Since V (X|Y )P <∞, this then leads to the desired bound

log |M| ≥ nH(X|Y )P −
√
nV (X|Y )P Φ−1(ε)− 1

2
log n

− γ
(
B0

T (X|Y )P
V (X|Y )P

+
√
V (X|Y )P

)
. (15)
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The constant term in (15) can be simplified when ε < 1
2 and n > (B +

1)2( 1
2 − ε)

−2. We get

log |M| ≥ nH(X|Y )P −
√
nV (X|Y )P Φ−1(ε)− 1

2
log n

− 1

ϕ(Φ−1(ε))
· 3T (X|Y )P

2V (X|Y )P
,

where we used that B0 ≤ 1
2 and

(√
V (X|Y )P

)3 ≤ T (X|Y )P . Moreover, we

note that the choice γ = dΦ−1

d ε

∣∣
ε

= 1
ϕ(Φ−1(ε)) is sufficient (and also neces-

sary for large n) due to concavity of Φ−1 on (0, 12 ). Here, ϕ(x) = dΦ
d x

∣∣
x

=
1√
2π

exp
(
− x2/2

)
denotes the probability density function of the standard

normal distribution. The constant term behaves very badly for small ε, e.g.,
we find

1

ϕ
(
Φ−1

(
10−4

)) ≈ 2.5 · 103

for a typical value of ε. Nonetheless, the normal approximation in Theorem 2
is often very accurate.

Theorem 3 (Achievability for IR) Let 0 < ε < 1 and let PXY be a prob-
ability distribution. There exists an ε-correct one-way IR protocol with the
following property:

– If V (X|Y )P > 0, we have

log |M| ≤ nH(X|Y )P +
√
nV (X|Y )P Φ

−1(1− ε) +
1

2
log n+O(1).

– If V (X|Y )P = 0, we have log |M| ≤ nH(X|Y )P − log ε.

Proof We employ a one-shot achievability bound due to [26] (we use the variant
in [41, Cor. 12]), which, for every 0 < δ < ε, ensures the existence of an ε-
correct protocol with

log |M| ≤ n log |X | −Dε−δ
s

(
(PXY )×n

∣∣ (UX × PY )×n
)
− log δ + 1.

The remaining steps are exactly analogous to the steps taken in the proof
of the converse asymptotic expansion, and we omit them here.

4.3 Proof of Corollary 1

The corollary is a trivial specialization of Theorem 1 and it only remains to
evaluate H(X|Y )P and V (X|Y )P for the distribution in Eq. (4). We find

H(X|Y )P = −
∑
x,y

PXY (x, y) log
PXY (x, y)

PY (y)

= −Q logQ− (1−Q) log(1−Q) =: h(Q),
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and

V (X|Y )P =
∑
x,y

PXY (x, y)

(
log

PXY (x, y)

PY (y)
+ h(Q)

)2

= Q

(
(1−Q) logQ− (1−Q) log(1−Q)

)2

+ (1−Q)

(
Q log(1−Q)−Q logQ

)2

=
(
Q(1−Q)2 + (1−Q)Q2

)(
logQ− log(1−Q)

)2
= Q(1−Q)

(
log

Q

1−Q

)2
=: v(Q).

4.4 Exact Converse Bound for (ε,Q)-correct Codes

Let us state a more precise lower bound on log |M| that is valid for all n and
can be evaluated numerically for large n. This bound has the advantage that
it does not contain unspecified contributions of the form O(1). In particular,
it does not suffer from the problem of potentially large constant terms as
discussed above.

Proposition 2 Let 0 < ε < 1 and let 0 < Q < 1
2 . Then, any (ε,Q)-correct

one-way error correction code on a block of length n satisfies

log |M| ≥ nh(Q)

+

(
n(1−Q)− F−1

(
ε
(
1 + 1/

√
n
)
;n, 1−Q

)
− 1

)
log

1−Q
Q

− 1

2
log n− log

1

ε
,

where F−1( · ;n, p) is the inverse of the cumulative distribution function of the

binomial distribution, i.e. F (k;n, p) :=
∑k
`=0

(
n
`

)
p`(1−p)n−` and F−1(ε;n, p) :=

max{k ∈ N |F (k;n, p) ≤ ε}.

Proof We repeat Eq. (14), where we found

log |M| ≥ − sup

{
R ∈ R

∣∣∣∣∣ Pr

[
n∑
i=1

log
PXX′(Xi, X

′
i)

UX′(X ′i)︸ ︷︷ ︸
=:Zi

≤ R

]
≤ ε+ δ

}
+ log δ .

for any 0 < δ < 1 − ε. Here, we further used that PX′ is uniform so that the
random variables Zi are of the simple form

Pr
P

[
Zi = logQ

]
= Q and Pr

P

[
Zi = log(1−Q)

]
= 1−Q .
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When Q 6= 1
2 , we can rescale this into a Bernoulli trial:

Bi =
(
Zi − logQ

)(
log

1−Q
Q

)−1
.

Thus, by an appropriate change of variable, we get

log|M | ≥

≥ −

(
n logQ+ log

1−Q
Q
· sup

{
k ∈ N

∣∣∣∣ Pr

[ n∑
i=1

Bi ≤ k
]
≤ ε+ δ

})
+ log δ

= nh(Q)

+

(
n(1−Q)−max

{
k ∈ N

∣∣∣F (k − 1;n, 1−Q) ≤ ε+ δ
})

log
1−Q
Q

+ log δ

(16)

= nh(Q) +

(
min

{
k ∈ N

∣∣∣F (k;n,Q) ≥ 1− ε− δ
}
− nQ

)
log

1−Q
Q

+ log δ.

The remaining optimizations over k and δ can be done numerically. Alter-
natively, we are free to choose δ = ε√

n
in Eq. (16) to conclude the proof.

4.5 Proof of Corollary 2

In order to prove Corollary 2, we just need to evaluate the conditional entropy
and entropy variances for the binary-gaussian distribution Eq. (7). For the sake
of completeness, we do the explicit calculations. For the conditional entropy
we obtain,

H(X|Y )f = −
∫ ∞
−∞

dy
∑

x∈{−1,1}

fXY (x, y)

(
log

fXY (x, y)

fY (y)

)

= −
∫ ∞
−∞

dy
∑

x∈{−1,1}

fXY (x, y) (log fXY (x, y))

+

∫ ∞
−∞

dyfY (y) log (fY (y)) (17)
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Let us expand separately the first term in Eq. (17):∫ ∞
−∞

dy
∑

x∈{−1,1}

fXY (x, y) (log fXY (x, y))

=

∫ ∞
−∞

∑
x∈{−1,1}

dy
1√

8πσ2
exp

(
− (x− y)2

2σ2

)(
log

1√
8πσ2

exp

(
− (x− y)2

2σ2

))

=

∫ ∞
−∞

∑
x∈{−1,1}

dy
1√

8πσ2
exp

(
− (x− y)2

2σ2

)(
−1

2
log 8πσ2 − (x− y)2

2σ2
log e

)

= −1

2
log 8πσ2 − log e

2σ2

∫ ∞
−∞

∑
x∈{−1,1}

dy
1√

8πσ2
exp

(
− (x− y)2

2σ2

)
(x− y)

2

= −1

2
log 8πσ2 − log e

2σ2

∫ ∞
−∞

dy
1√

2πσ2
exp

(
− y2

2σ2

)
y2

= −1

2
log 8πσ2e (18)

The marginal on Y can be found to be:

fY (y) =
∑

x∈{−1,1}

fXY (x, y)

=
1√

8πσ2

(
exp

(
− (y + 1)2

2σ2

)
+ exp

(
− (y − 1)2

2σ2

))
(19)

It follows that H(X|Y )f = h(σ) by plugging Eq. (18) and Eq. (19) back
into Eq. (17).

Now let us prove that the conditional entropy variance is given by Eq. (9).

V (X|Y )f : = Var

[
− log

fXY
fY

]
= E

[(
− log

fXY
fY

)2
]
−
(
E
[
− log

fXY
fY

])2

= E

[(
− log

fXY
fY

)2
]
− (h(σ))2 (20)

We conclude by identifying the first term in the right hand side of Eq. (20)
with e(σ):

E

[(
− log

fXY
fY

)2
]

=

∫ ∞
−∞

dy
∑

x∈{−1,1}

fXY (x, y)

(
− log

fXY (x, y)

fY (y)

)2

= 2

∫ ∞
−∞

dyfXY (1, y)

(
− log

fXY (1, y)

fY (y)

)2

where the last equality follows because fXY (1, y) = fXY (−1,−y).
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5 Numerical Results

As shown above, log |M| ≈ ξ(n, ε; · )nh( · ) is theoretically achievable for
both binary-binary and binary-gaussian distributions, and optimal up to ad-
ditive constants. However, this implies that, for instance in the binary-binary
case, the approximation log |M| ≈ 1.1nh(Q) is provably too optimistic if
ξ(n, ε;Q) > 1.1, e.g. for n ≤ 104, Q ≥ 2.5%, and ε = 10−2. The function
ξ( · , ε;Q) is plotted in Fig. 1 for different values of ε and Q.

Moreover, theoretical achievability only ensures the existence of an infor-
mation reconciliation (error correcting) code without actually constructing it.
In fact, it is not known if efficient codes used in practical implementations can
achieve the above bound. Hence, the approximation given in Corollary 1 and
Corollary 2 are generally too optimistic and must be checked against what can
be achieved using state-of-the-art codes.

We suggest that practical information reconciliation codes for finite block
lengths should be benchmarked against the fundamental limit for that block
length, and not against the asymptotic limit. Moreover, we conjecture that,
for some constants ξ1, ξ2 ≥ 1 depending only on the coding scheme used, the
leaked information due to information reconciliation can be approximated well
by

leakEC ≈ ξ1 · nh(Q) + ξ2 ·
√
nv(Q)Φ−1(1− ε) (21)

for a large range of n and Q (σ for binary-gaussian distributions) as long as ε
is small enough. Here, ξ1 measures how well the code achieves the asymptotic
limit (1st order) whereas ξ2 measures the 2nd order deficiency.

In the following we test this conjecture against some state-of-the-art error
correcting codes (designed for the binary symmetric and additive white gaus-
sian channels, BSC and AWGN, respectively). More precisely, we study several
scenarios where we fix two of the parameters in (21) —the failure probabil-
ity ε, the block length n, the leakage and the noise parameter— and explore
the tradeoff between the two free parameters. In each secenario, we construct
codes that verify the two fixed parameters and fit ξ1 and ξ2 according to (21).
For this numerical analysis we have chosen low-density parity-check (LDPC)
codes following several recent implementations [42–44].

We constructed two sets of LDPC codes with the progressive edge algo-
rithm (PEG) [45]. We constructed the first set of codes using the following
degree polynomials for the BSC:

λ1(x) = 0.1560x+ 0.3482x2 + 0.1594x13 + 0.3364x14

λ2(x) = 0.1305x+ 0.2892x2 + 0.1196x10 + 0.1837x12 + 0.2770x14

λ3(x) = 0.1209x+ 0.2738x2 + 0.1151x5 + 0.2611x10 + 0.2291x14

where λ1(x), λ2(x) and λ3(x) were designed for coding rates 0.6, 0.7 and 0.8,
respectively [46].
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Fig. 3 Simulated block error rates ε of LDPC codes of length n = 103 and n = 104 and
code rates R = 0.6, R = 0.7 and R = 0.8 as a function of quantum bit error rate Q.

And we constructed the second set of codes using these polynomials for
the AWGN channel:

λ4(x) = 0.16988x+ 0.29342x2 + 0.1633x6 + 0.15835x11 + 0.21505x28

λ5(x) = 0.13372x+ 0.2689x2 + 0.00358x6 + 0.15093x7 + 0.01572x8

+ 0.04647x9 + 0.0001x10 + 0.00228x19 + 0.08615x24 + 0.02173x25

+ 0.27025x27 + 0.00017x29

λ6(x) = 0.10462x+ 0.31534x2 + 0.26969x8 + 0.00933x19 + 0.02778x21

+ 0.00803x24 + 0.23115x26 + 0.03406x29

with code rates 0.6, 0.7 and 0.8, for λ4(x), λ5(x) and λ6(x), respectively.
Fig. 3 and Fig. 4 show the block error rate as a function of Q (the crossover

probability in BSC) and SNR= 1/σ2 (the signal to noise ratio in the AWGN)
for codes with rates 0.6, 0.7, 0.8, and lengths 103, 104. The thick lines connect
the simulated points while the dotted lines represent a fit following Eq. (21)
(the fit values can be found in Table 1). The fit perfectly reproduces the so-
called waterfall region of the codes. However, Eq. (21) drops sharply with Q
for Q ∈ [0, 0.1] and with σ for σ ∈ [0, 4] while LDPC codes experience an error
floor. In this second region the fit can not approximate the behavior of the
codes.

In Fig. 1 we plot the function ξ(n, ε;Q) and the efficiency results obtained
with LDPC codes for reconciling strings following a binary-binary distribution.
We chose as representative lengths 103, 104, 105, and 106. For every block
length we constructed codes of rates 0.6, 0.7 and 0.8 following λ1(x), λ2(x),
and λ3(x). The points in the figure were obtained by puncturing and shortening
the original codes [47,48] until the desired block error rate was obtained. The
results show an extra inefficiency due to the use of real codes. This inefficiency
shares strong similarities with the converse bound, its separation from the
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Fig. 4 Simulated block error rates ε of LDPC codes of length n = 103 and n = 104 and
code rates R = 0.6, R = 0.7 and R = 0.8 as a function of SNR.

asymptotic value is greater for lower values of Q, block error rates and lengths
and fades as these parameters increase. For example, for n = 104, Q = 1.0%
and ε = 10−2 the extra inefficiency due to the use of real codes is over 1.2
while for n = 106, Q = 5.0% and ε = 10−1 the extra inefficiency is close to
1.05.

Similarly, in Fig. 2 we plot ξ(n, ε;σ) and the efficiency obtained with LDPC
codes when reconciling strings following binary-gaussian distributions. Repre-
sentative lengths were also chosen 103, 104, and 105. Codes of rates 0.6, 0.7,
and 0.8, following λ5(x), λ6(x) and λ7(x), respectively, were punctured until
the desired block error rate was obtained (ε = 10−1). As in Fig. 1, the results
show an additional inefficiency due to the use of real codes.

Finally, we address the design question posed above, that is, we study
the efficiency variation as a function of the block error rate for fixed n and
noise parameter. We have performed this study only for the binary-binary
distribution for computational reasons, but we expect similar results to hold
for the binary-gaussian. In this setting we need code constructions that allow
to modulate the rate with fixed block-length. The most natural modulating
option would have been to construct codes for every n of interest and augment
[49] the codes, that is, eliminate some of the restrictions that the codewords
verify. However, it is known that LDPC codes do not perform well under this
rate adaptation technique [50]. In consequence, we constructed a different code
with the PEG algorithm for every rate. In order to obtain a smooth efficiency
curve we used the degree polynomials λ1(x), λ2(x) and λ3(x) for constructing
all codes even with coding rates different to the design rate.

Fig. 5 shows the efficiency as a function of the block error rate. Each of the
two subfigures (a) and (b) show the simulation results for codes of length 103

and 104, respectively. Colours blue and red correspond to Q = 1.5% and 3.0%
in subfigure (a) and to 2.5% and 4.0% in subfigure (b). The solid lines show the
bound given by Corollary 1, similar to Fig. 1 we observe that, ceteris paribus,
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Fig. 5 Ratio between the leakage and the asymptotical optimum in several scenarios as
a function of the block error rate ε. Subfigures (a) and (b) show results for block lengths
103 and 104, respectively. In each subfigure the solid lines show the converse bound from
Corollary 1 while the dotted lines show the values achieved with actual LDPC codes.

lower values of Q imply higher values of ξ. The points show values achieved
by LDPC codes: each point represents the block error rate of a different parity
check modulated code. Finally the dotted lines show the best least squares
fit to Eq. 21, the values of ξ1 and ξ2 can be found in Table 1. From these
curves we can extract some useful design information, 1) if the target failure
probability is very high [42] then the gain obtained by increasing the block
length is modest, 2) if the target failure probability is low (below 10−4) the
leakage is over a fifty percent larger than the optimal one for moderate block
lengths and 3) for block-length 105, the largest length for which we could
compute simulations in the whole block error rate region, we were unable to
consistently offer efficiency values below 1.1 and furthermore we report no
point with f below 1.05.

Tables 1 and 2 show the values of ξ1 and ξ2 used in Fig. 1, Fig. 3, Fig. 5 and
Fig. 2, Fig. 4 respectively to fit the data points obtained from the simulations.
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n Q ε leak ξ1 ξ2

- 0.010 10−2 - 1.13 3.82
- 0.025 10−2 - 1.07 3.71
- 0.050 10−2 - 1.06 3.54
- 0.050 10−1 - 1.05 2.41

103 - - 4 · 102 1.11 1.39
103 - - 3 · 102 1.12 1.45
103 - - 2 · 102 1.13 1.69
104 - - 4 · 103 1.07 1.41
104 - - 3 · 103 1.08 1.44
104 - - 2 · 103 1.11 1.89

103 0.015 - - 1.16 1.52
103 0.030 - - 1.16 1.31
104 0.025 - - 1.14 1.26
104 0.040 - - 1.07 1.58

Table 1 Values of ξ1 and ξ2 for the fitted curves in Fig. 1, Fig. 3 and Fig. 5.

n SNR ε leak ξ1 ξ2

- 1.6 10−1 - 1.07 2.58
- 2.1 10−1 - 1.06 2.67
- 2.8 10−1 - 1.06 2.74

103 - - 4 · 102 1.11 1.23
103 - - 3 · 102 1.12 1.34
103 - - 2 · 102 1.13 1.40
104 - - 4 · 103 1.08 1.27
104 - - 3 · 103 1.07 1.42
104 - - 2 · 103 1.08 1.33

Table 2 Values of ξ1 and ξ2 for the fitted curves in Fig. 2 and Fig. 4.

In these curves ξ1 is —independently of ε, n, Q, σ— in the range [1.05, 1.16]
while the 2nd order deficiency ξ2 is more sensible to the parameter variations.
In the first four rows of Table 1, that correspond to Fig. 1 with fixed Q and
ε, ξ2 is in the range [2.41, 3.82], for the middle six rows, that correspond to
Fig. 3 with fixed n and leak, ξ2 is in the range [1.49, 1.96], while for the last
four rows, that correspond to Fig. 5 with fixed n and Q, ξ2 is in the range
[1.26, 1.58]. In the first three rows of Table 2, that correspond to Fig. 2 with
fixed σ and ε, ξ2 is in the range [2.58, 2.71], while in the last six rows, that
correspond to Fig. 4 with fixed n and leak, ξ2 is in the range [1.07, 1.42]. Note
that for each scenario, the averages in these ranges could safely be used for
system design purposes since necessarily codes with those ξ1 and ξ2 values or
better exist.

6 Conclusion

In this paper we studied the fundamental limits for one-way information rec-
onciliation in the finite key regime. These limits imply that the commonly used
approximation log |M| ≈ 1.1nh(Q) is too optimistic for a range of error rates
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and block-lengths, and proposed a two-parameter approximation that takes
into account finite key effects.

We compared the finite length limits with LDPC codes and found a consis-
tent range of achievable finite-length efficiencies. These efficiencies should be
of use to the quantum key distribution systems designer. One question that
we leave open is the study of these values for different coding families.

Finally, it is clear that PE and PA also contribute to finite-length losses in
the QKD key rate. While it seems possible to investigate fundamental limits
in PA based on the normal approximation of randomness extraction against
quantum side information [39] as a separate problem, we would in fact need
to investigate it jointly with IR since there is generally a trade-off between the
two tasks that needs to be optimized over.
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