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Feynman’s prescription for a quantum simulator was to find a Hamitonian for a system that could serve
as a computer. The Pólya-Hilbert conjecture proposed the demonstration of Riemann's hypothesis through
the spectral decomposition of Hermitian operators. Here we study the problem of decomposing a number
into its prime factors, N ¼ xy, using such a simulator. First, we derive the Hamiltonian of the physical
system that simulates a new arithmetic function formulated for the factorization problem that represents the
energy of the computer. This function rests alone on the primes below

ffiffiffiffi
N

p
. We exactly solve the spectrum

of the quantum system without resorting to any external ad hoc conditions, also showing that it obtains, for
x ≪

ffiffiffiffi
N

p
, a prediction of the prime counting function that is almost identical to Riemann’s RðxÞ function.

It has no counterpart in analytic number theory, and its derivation is a consequence of the quantum theory
of the simulator alone.
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The computational complexity assumption [1] to find
the prime factors of a large number N is the basis for the
security of the ubiquitous RSA, a cornerstone of the public
key cryptosystems so widely used in our digital society.
However, despite the many mathematical and computa-
tional advances, the classical complexity of the factoriza-
tion problem is still unknown. Fortunately, the best
classical algorithms known scale worse than polynomially
in the number of bits of N: by now, the building blocks of
the cyberinfrastructure still resist.
Nonetheless, in the quantum world, factoring is an easy

problem that requires only polynomial resources using
Shor’s algorithm [2]. This amazing result raises new
questions about the relationship between quantum mechan-
ics and number theory and, more generally, with physics,
a connection dating back to Pólya and Hilbert [3,4], who
laid a program to prove Riemann’s hypothesis through
the spectrum of physical operators. However, the physical
realization of Shor’s algorithm is still limited to proof-of-
concept demonstrations, far away from factoring numbers
of the size used in real-world cryptosystems.
An alternative would be to build the solutions in Hilbert

space of a quantum simulator performing factorization,
instead of going through the route of a gate-based, fully
programmable, quantum computer. The key idea following
the pioneering suggestions of Feynman [5] is to translate
factoring arithmetics into the physics of a device whose
superposition of states mimics the problem: i.e., a factoring
(analog) computer. The states of the simulator would be the
solutions of some Hermitian operator depending only on
the number that we want to factorize. Moreover, by simply
using the computer over different values of N, a quantum
factoring simulator must be capable of accessing the
statistics of the prime numbers. Thus, it might provide

insight into fundamental problems in number theory
following the Pólya-Hilbert program. Here we propose a
new approach to the factorization problem based on the
physics of a bounded Hamiltonian that corresponds to
a new arithmetic function defined for this problem.
The values of this new function should correspond, in
the quantum theory, to eigenvalues of the simulator. To the
best of our knowledge, this is the first example of a
quantum system whose spectrum supports the Pólya-
Hilbert conjecture.
First, to bind the Hamiltonian, we need a problem

definition leading to a finite Hilbert space. For this we
define a factorization ensemble for a given N [6]. Suppose
that we want to factorize N. A simple trial division
algorithm will require us to inspect all the primes x less
than or equal to

ffiffiffiffi
N

p
; i.e., a total of πð ffiffiffiffi

N
p Þ trials will be

required. The factorization ensemble of N is defined as the
set of all pairs of primes that when multiplied give numbers
Nk with the property πð ffiffiffiffiffiffi

Nk
p Þ ¼ j, where j ¼ πð ffiffiffiffi

N
p Þ.

The solution to the factorization problem consists then in
finding the appropriate pair in the factorization ensemble
that we will denote as F ðjÞ.
Then, to build a bridge between number theory and

quantum mechanics, we redefine the factorization problem
introducing a single-valued arithmetic function computed
for a pair of primes ðxk; ykÞ in the ensemble of N. After,
we transform this function into a Hamiltonian mapping
the arithmetics of factorization to the physics of a classical
system; finally, we obtain the quantum observable
(operator) corresponding to the energies of the classical
counterpart. Thus, obtaining the factor of N is equivalent to
measuring the energy of this simulator.
The cardinality of the factorization ensemble is, thus,

important, since, given this interpretation, it is the
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dimension of the Hilbert space associated with the observ-
able. It can be derived [6] as a corollary of theorem 437 in
[7] for the special case of the product of two primes,

jF ðjÞj≃ ffiffiffiffi
N

p
( log log

ffiffiffiffi
N

p
þ oð1Þ) ∼

XffiffiffiNp

xk¼2

ffiffiffiffi
N

p

xk
; ð1Þ

where the sum is taken over the primes. Moreover, given
these estimates, one would expect

ffiffiffiffi
N

p
=xk as the number

of possible different coprimes yk per each xk. The new
arithmetic function that represents the Hamiltonian of the
system should be symmetric in the factors of N and also
include an explicit dependence on j.
A simple function with these properties for Nk ¼ xkyk ∈

F ðjÞ is

Eðxk; ykÞ ¼
πðxkÞπðykÞ

j2
; ð2Þ

where πðxÞ is the prime counting function. Note that
knowing an exact rational value of E, there necessarily
exists a single solution of the equation E ¼ πðxÞπðN=xÞ=j2
in the ensemble. Obviously, E ¼ EðxÞ. Moreover, the
behavior of EðxÞ, similar to πðxÞ, has two components:
a regular plus a oscillatory one [6],

EðxÞ ¼ 1þ ϵðN; xÞ;

where ϵðN; xÞ ¼ uðN; xÞ2 þ ϵflðN; xÞ.
Here, ϵflðN; xÞ, the oscillating function, depends on the

zeros of Riemann’s ζ [9], while u is a regular function that
can be approximated for N ≫ 1 as

uðN; xÞ ¼ γ logð
ffiffiffiffi
N

p
=xÞ; ð3Þ

where γ ¼ j=
ffiffiffiffi
N

p
∼ 1= logð ffiffiffiffi

N
p Þ.

Let us introduce now two new arithmetic functions:

p ¼ πðyÞ − πðxÞ
2j

; q ¼ πðyÞ þ πðxÞ
2j

: ð4Þ

Of course, these are related to E, because after Euclid’s
factorization theorem there exist a single free parameter for
the problem of factoring N (the factor x or, as we have
reformulated here, the value E)

−p2 þ q2 ¼ E; ð5Þ

which has the form of the energy of the classical inverted
harmonic oscillator whose trajectories can be parametrized
as q ¼ E1=2 coshðtÞ. From this point of view, along with the
computation of E from Eq. (5), we might also consider
variations in p and q due entirely to changes in t at constant
E. For large N, t can be considered a quasicontinuum

parameter, and it has indeed the meaning of the time
variable in Hamilton’s equations (i.e., E is an adiabatic
invariant of the variation),

δp ¼ −∂qHδt; δq ¼ ∂pHδt; ð6Þ

H being the Hamiltonian on the canonical coordinates p
and q,

Hðp; qÞ ¼ 1

2
ð−p2 þ q2Þ: ð7Þ

Moreover, p ¼ ∂qSðqÞ, in terms of Hamilton’s principal
function (the action) SðqÞ obtaining the Hamilton-Jacobi
equation

H(∂qSðqÞ; q) ¼ E=2: ð8Þ

Equation (8) is relevant because q must be bounded in
F ðjÞ, and, therefore, its solutions are confined trajectories
in parametric space,

ffiffiffiffi
E

p
≤ q ≤

πðN=xmÞ þ πðxmÞ
2j

¼ qm ð9Þ

for some xm in F ðjÞ.
Now, the Hamilton-Jacobi constraint for SðqÞ and

quantum transformation theory allow us to obtain the
momentum operator acting on the wave functional ψEðqÞ
for the q numbers p → −i∂q; the Hamiltonian constraint in
Eq. (5) becoming a Hermitian operator in our coordinates
acting on ψ . It is interesting to note that the same
Hamiltonian has been used previously, although through
a different canonical transformation, in the study of the
distribution of Riemann’s zeros [10].
Hence, Eq. (5) transforms into

ψEðqÞ00 þ q2ψEðqÞ ¼ EψEðqÞ; ð10Þ

our coordinate space satisfies E1=2 ≤ q ≤ qm, and our
quantum conditions should be

ψEðE1=2Þ ¼ 0; ψE(qmðNÞ) ¼ 0: ð11Þ

The Schrödinger Eq. (10) and the Sturm-Liouville
conditions in Eq. (11) define the eigenvalue problem
leading to the quantization of E. It is important to note
here that we do not have to impose any ad hoc constraints
to the wave function in order to reach the limits required for
quantization. Now, a coordinate transformation ρ ¼ q2 and
ψE ¼ REðρÞρ3=4 gives

R00
E þ 2

ρ
R0
E −

lðlþ 1Þ
ρ2

RE þ 2μ

�
r2 −

z2

ρ

�
RE ¼ 0; ð12Þ
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where l ¼ −1=4, μ ¼ 1=2, r ¼ 1=2, and z2 ¼ E=4 trans-
forms our equation in the tridimensional Schrödinger
equation for the Coulomb scattering of two identical
charged particles in their center of mass.
The general solution of Eq. (12) is

REðρÞ ¼ ρ−1=4ℜfe−iρ=2½U(αðEÞ; 3=2; iρ)
þD0F(αðEÞ; 3=2; iρ)�g: ð13Þ

Fða; b; cÞ and Uða; b; cÞ are the confluent hypergeo-
metric functions, αðEÞ ¼ −iðE=4Þ þ 3

4
, and D0 is a func-

tion of E obtained from REðEÞ ¼ 0. After Eq. (11), the
solution exists if and only if the energy E is real and exactly
satisfies the quantum condition [6]:

ℜ

�
Fðα; 3=2; iρmÞUðα; 3=2; iEÞ
Fðα; 3=2; iEÞUðα; 3=2; iρmÞ

�
¼ 1: ð14Þ

Note that inverting Eq. (14) provides an algorithm to get
xjN from E, the eigenvalue corresponding to the quantum
stationary state of the simulator.
The hypothesis of the existence of the quantum simulator

will be true if and only if the spectrum of the simulator
provides the statistics of the prime numbers.
The problem requires the theory of scattering of nuclear

charged particles [11]. Asymptotically, for ρ ≫ 1, Eq. (12)
gives

RE ∼ 1=ρ sin

�
ρ=2 −

E
4
log ρþ δC þ 7π

8
þ δ0

�
: ð15Þ

Here, δC ¼ argΓðαÞ is a shift in the distorted Coulomb
wave for the asymptote, and δ0 is obtained from the
asymptotic formulas of Uðα; 3=2; iρÞ and Fðα; 3=2; iρÞ as

D0e3πE=8 cot δ0 → 1: ð16Þ

Recall now that in the ensemble, E attains its maximum
at πð3Þ ¼ 2,

maxE ¼ 2
πðN=3Þ

j2
∼ 1=3γ−1 ¼ oðlog

ffiffiffiffi
N

p
Þ: ð17Þ

It means that for small prime factor candidates xjN, the
values of e3Eπ=8 in Eq. (16) are Oð ffiffiffiffi

N
p Þ when we expand E

in a series near 1
3
log

ffiffiffiffi
N

p
. This gets [6]

δ0 ¼ A
ffiffiffiffi
N

p
logE − hþ π

2
;

where A and h depend only on N.
From the asymptote in Eq. (15), the second quantum

condition at ρm ¼ q2m imposes REðρmÞ ¼ 0. Therefore,

δC þ δ0 þ ρm=2 − E=4 log ρm þ 7π

8
¼ nπ; ð18Þ

where n is an integer number. Redefine n ¼
⌊ρm=ð2πÞ⌋ − k, for some integer k, 1 ≤ k ≤ jF ðjÞj (the
convention taken that large k’s map the region E ≫ 1).
When N ≫ 1, the leading term in Eq. (18) is precisely δ0,
and it yields to

−A
ffiffiffiffi
N

p

π
logEþ oð1=E2Þ →

�
k −

h − π=2
π

�
: ð19Þ

Now we have Eðmax kÞ ¼ maxE. Using Eq. (1) with
max k ¼ jF ðjÞj gets

A → −π; h ¼ Oð
ffiffiffiffi
N

p
Þ;

and δ0 → −π
ffiffiffiffi
N

p
logEþOð ffiffiffiffi

N
p Þ; hðNÞ contributes to the

wave function as a global phase and can be fixed with a
new redefinition of n as previously done.
Thus, from Eq. (19) one obtains the solution EðkÞ for

k ∼OðjF ðjÞjÞ, i.e., small prime factor candidates

E → Cγ−κ; ð20Þ

where, for convenience, we defined the variable
κ ≡ k=jF ðjÞj, and C is a parameter depending on N.
It is possible to obtain better insight into the meaning of

Eq. (20) by transforming its dependence on the variable κ
on another in uðN; xÞ. This is possible because there is only
one pair of coprimes in F ðjÞ such that N ¼ xy, implying
a relation κ → x. To explore this, we can use a simple
interpolating polynomial of degree 2 in two known primes,
say, x ¼ 2 and x ¼ 3, using the statistics of the primes
in F ðjÞ:

uðN; xÞ≃ α1ðNÞκ − α2ðNÞκ2: ð21Þ

Equation (21) also satisfies that uðN;
ffiffiffiffi
N

p Þ ¼ 0 at κ ¼ 0,
forcing the constant term to be zero. The result for F ð304Þ
is shown in Fig. 1.
This solution valid for any N can also be used as a

theoretical test of the quantum simulator. Let us check
explicitly that the statistics of the states corresponds to that
of the primes. Simply inverting Eq. (21) we get [6]

EðxÞ → Cγ−κðxÞ: ð22Þ

Now, directly from Eq. (2) and recalling that asymp-
totically πðN=xÞ → j=ð1þ uÞð ffiffiffiffi

N
p

=xÞ, we finally obtain
[6] for x ≪

ffiffiffiffi
N

p
,

πðxjNÞ → γxð1þ uÞEðxÞ ð23Þ

for x a prime candidate to factor N. This can be interpreted
as a parametric family of curves enveloping πðxÞ. Thus, we
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can determine the constant C by simply matching some
known value of πðxÞ to the asymptote above.
Further proof of the exactness of the results obtained

here is to show that the expression of πðxjNÞ in Eq. (23)
actually does not depend on N, as can be deduced
classically from the universality of the primes and that
for N → ∞ every prime should be in F ðjÞ. We have
experimentally tested this in many cases. This is a neces-
sary condition but comes as a striking verification, since all
the results arise from a purely quantum theory.
As seen in Fig. 2, Eq. (23) (for x ≪

ffiffiffiffi
N

p
) is tantamount

to the best possible approximation given by the Riemann
function. The result fully confirms the consistency of the
quantum solution.
Equation (21) is just an element required for the

calculations; it was obtained specifically to match, using
the simplest possible polynomial, the function uðN; xÞ in

terms of the statistics of the primes in F ðjÞ. Note that κðxÞ
must exist—independent of our approximations—and,
according to the distribution of prime factor candidates
in the ensemble, should be a stepwise function.
To summarize, we introduced new concepts and arith-

metic functions that could play a significant role in the
quantum factorization problem. The factorization ensemble
is the main one: it allows us to bind the Hamiltonian of a
quantum factoring simulator. Then, we reformulated the
factorization problem to that of finding a new parameter
of the problem: the arithmetic function E; it corresponds to
the energy eigenvalues of the simulator. We showed that
the spectrum of the simulator gives in the semiclassical
quantization regime—large k, i.e., x ≪

ffiffiffiffi
N

p
—the statistics

of the primes. The compelling exactitude of this prediction
justifies that both the simulator and the new algorithm of
factorization outlined, which inverts the quantum condi-
tions [Eq. (14)] for the coprime factor x ¼ fðEÞ, will work.
The next step will be to find out a suitable physical system
described by this Hamiltonian, to which the boundary
conditions can be applied. The spectrum of the system will
provide the E values that, through the inverse of the
quantum conditions found in this paper, will finally give
the factors.
As a final remark, this work supports indirectly the

Pólya-Hilbert program [3] to prove Riemann’s hypothesis:
the spectrum of the imaginary part of the zeros of ζðσÞ
should be eigenvalues of a Hermitian operator. This being
true, it will imply, according to Riemann, the statistics of
the primes πðxÞ. Here we evaluated EðxÞ—an eigenvalue of
a Hermitian operator—obtaining an approximation to πðxÞ
for the primes in F ðjÞ. It suggests that, perhaps, the truth
of Riemann’s hypothesis could be found with the help of
the functions and the approach introduced in this work,
particularly—let us speculate with the physics of the
hypothesis [4]—if the contributions of δCðEÞ, for E ∼ 1
to the spectrum of the energies of the simulator were
correlated with those obtained for the arithmetic function E
computed from the zeros of ζðσÞ on the critical line.
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