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Abstract—We consider in this paper the problem of informa-
tion reconciliation in the context of secret key agreement between
two legitimate parties, Alice and Bob. Beginning the discussion
with the secret key agreement model introduced by Ahlswede
and Csiszár, the channel-type model with wiretapper, we study
a protocol based on error correcting codes. The protocol can
be adapted to changes in the communication channel extending
the original source. The efficiency of the reconciliation is only
limited by the quality of the code and, while transmitting more
information than needed to reconcile Alice’s and Bob’s sequences,
it does not reveal any more information on the original source
than an ad-hoc code would have revealed.

I. INTRODUCTION

Lets start by considering the channel-type model with wire-
tapper (CW) for secret key agreement introduced by Ahlswede
and Csiszár [1] as shown in Fig. 1. In this model a legitimate
party, Bob, and an eavesdropper, Eve, are both connected to
another legitimate party, Alice, through a discrete memoryless
channel (DMC). Alice generates a discrete sequence of n
values, Xn, while Bob and Eve observe the correlated outputs,
Y n and Zn respectively, obtained after the transmission of Xn

over the DMC. Both outputs are characterised by transition
probability PY,Z|X , with each component of the sequences
being the outcome of an independent use of the channel.
Alice and Bob have also access to a public but authenticated
channel used to distill a shared secret key from their correlated
sequences. Public and authenticated means in this context that
Eve has noiseless access to the information exchanged through
the channel, but she is not able to tap the channel without being
noticed. Therefore the integrity of the messages on the public
channel is guaranteed.

Fig. 1. Ahlswede and Csiszár’s model CW.

Protocols that distill a secret key usually divide the dis-
tillation process in two different phases. In the first one,
known as information reconciliation or simply reconciliation,
Alice and Bob exchange redundant information over the
public channel in order to eliminate any discrepancy in their
correlated sequences, Xn and Y n respectively. At the end of
the reconciliation phase both parties have agreed on a shared
secret string χ, though in many cases χ = Xn. On the second
phase, known as privacy amplification, Alice and Bob shrink
their strings in order to wipe any information of the previously
shared key that the eavesdropper could have on χ through Zn

or through any communication over the public channel with
information about the strings. This construction allows to split
the secret key distillation process into two easier problems.
This division is not necessarily suboptimal and, as it is shown
in section IV, under certain conditions Alice and Bob can
achieve the maximal secret key rate.

The paper is organised as follows: Section II includes a
review of the information reconciliation problem linking it
with secret key agreement. Section III describes an information
reconciliation protocol over an extended string; this protocol
uses Wyner’s coset scheme with Low-Density Parity-Check
(LDPC) codes [2] and can achieve an efficiency as close to
its optimum value as allowed by the quality of the code. In
section IV it is proved that the proposed protocol does not
reveal any more information on X than an adapted solution
for string X would reveal. And finally, section V analyses the
performance of this protocol in a practical scenario.

II. PROBLEM STATEMENT

Secret key distillation process is usually divided into privacy
amplification and information reconciliation. This section de-
fines the meaning of secret key in the context of this paper.
Then privacy amplification and information reconciliation are
introduced and linked. The objective is to highlight the in-
fluence of efficient reconciliation in the achievable secret key
rate.

A. Secret Key Agreement

Alice, Bob and Eve hold n-length sequences, Xn, Y n and
Zn respectively, with each component of the sequences being
characterised by PY,Z|X .

Let φi denote the message that Alice sends over the public
channel in its i-th use, and ψi denote the message that Bob
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sends in his i-th use of the channel. Both sets of messages or
communications, φ and ψ, are respectively known as forward
and backward transmissions. Depending on the protocol any
individual message or even φ or ψ might be null. The former
case, φ ∈ ∅, is known as direct reconciliation while the latter,
ψ ∈ ∅, is known as reverse reconciliation. After k uses of the
public channel, i.e. after the exchange of the set of Alice’s
first k messages, φk, and Bob’s, ψk messages, Alice and Bob
estimate their shared keys to be K and L respectively by using
an agreed protocol.

Definition 1: A strong secret key rate S is achievable if
there exist (φk, ψk) that for large enough n and for every
ε > 0 that meets simultaneously the following restrictions [3]:

Pr[K #= L] < ε (1)

I(φk, ψk, Zn;K) < ε (2)

H(K) > n · S − ε (3)

log |K| < H(K) + ε (4)

where H(·) stands for Shannon’s entropy, while I(·; ·) stands
for Shannon’s mutual information. This definition of secret
key rate is strong compared to previous definitions in which
the convergence of the conditions was asymptotic and not
absolute. In [4] it is shown that both sets of conditions share
the same bounds for secret key generation.

Henceforth the superindex indicating length is dropped to
reduce the notation, the length of the variable or string should
be clear from the context, whenever in doubt we clarify the
value that the superindex is taking.

The largest achievable secret rate S is upper bounded by
the secret key capacity, CS , which if only forward communi-
cations are allowed is defined by [1]:

CSf = max
PU,X

[I(U ;Y )− I(U ;Z)] (5)

where U is an auxiliary random variable that forms the Markov
chain U → X → Y Z.

It should be noticed that CSf is a lower bound of CS if
two way communications are allowed [5]. A case of special
interest arises when U cannot be maximised or X cannot
be manipulated by Alice, an example of this situation is a
Quantum Key Distribution (QKD) protocol fixing X [6]. In
this case, taking into account the restrictions, the previous
result allows Alice and Bob to achieve at least a secret rate of

I(X;Y )− I(X;Z) = H(X|Z)−H(X|Y ) (6)

where H(X|Y ) and H(X|Z) are the Shannon conditional
entropy.

Fig. 2. Source coding with side information.

B. Privacy Amplification and Information Reconciliation

The problem of privacy amplification —how to reduce
I(X;Z), the knowledge that Eve might have gathered during
the process— has been widely studied. Some of the results
on privacy amplification are based on the use of universal
families of hash functions [7], however in this work we use
extractors [8], proposed by Maurer and Wolf for privacy
amplification [4], as they allow to prove the strong secret
key rate bounds. An extractor is a function that, with a small
amount of random bits acting as catalyst, obtains a number of
almost uniformly distributed random bits from a source. The
main result, that we develop in section IV, states that given an
upper bound on the information the eavesdropper has, Alice
and Bob can extract a smaller and highly secret key. The length
of the new key is a function of a security parameter and of the
upper bound on Eve’s information, which in turn depends on:
the information that Eve gathers on the private channel and the
information that Eve gathers in the information reconciliation
phase, directly linking privacy amplification with information
reconciliation.

Information reconciliation in the context of secret key
agreement is also a well known problem. Once it has been
separated from privacy amplification, the problem is reduced to
one of Slepian-Wolf coding [9] (see Fig. 2). Given a source X ,
it is sufficient a rate R ≥ H(X) to losslessly encode X , and
given two sources X and Y to an individual encoding terminal
it is sufficient with R ≥ H(X,Y ). The surprising result
by Slepian and Wolf states that even for separate encoding
R ≥ H(X,Y ) is enough [9] and, of particular interest in
information reconciliation, that it is also enough for Alice to
encode her source X with R ≥ H(X|Y ) in order to allow
Bob infer X .

Wyner’s coset scheme is a good solution for the compres-
sion of binary sources with side information [10], [11]. The
fundamental idea is to assign each source vector to a bin from
a set of 2H(X|Y )+ε known bins. The encoder, Alice, transmits
the bin number to the decoder, thus encoding X with rate
R = H(X|Y ) + ε. The decoder looks for the source vector
inside the described bin with help of the side information Y .

The efficiency of an information reconciliation protocol
sending a sequence C through the public channel to help Bob
recover X using side information Y can be measured using a
quality parameter f . If we allow | · | to stand for the length of
a variable, f is defined by:

f =
|C|

H(X|Y )
≥ 1 (7)
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According to this definition of efficiency, it takes its lowest
value f = 1 in the optimal case, i.e. when the information
published for reconciliation is the minimum possible informa-
tion.

C. Previous Work

Several protocols have been studied for information recon-
ciliation. Many of them have been discussed in the context
of Quantum Key Distribution (QKD) as it is one of the main
scenarios of real secret key distillation.

Brassard and Salvail proposed the Cascade protocol in
[12] for binary variable reconciliation. Cascade despite being
highly interactive remains the most widely used protocol. It
offers to its advantage a simple description and a relatively low
efficiency value. Other protocols include a protocol by Liu et
al. [13] that combines advantage distillation and information
reconciliation, and Winnow [14], a protocol in which Alice
and Bob exchange the syndrome of a Hamming code for each
block.

LDPC codes have been proposed for coding correlated
sources in [15], though no explicit codes were given. A
rate adaptive contruction with non binary LDPC codes was
proposed in [16]. On [17] LDPC codes were optimised for
the binary symmetric channel (BSC) and used to reconcile
binary variables. The efficiency of the codes was close to 1
for crossover probabilities near the codes’ thresholds, however
as only a discrete number of codes was available the efficiency
exhibited a saw behaviour (see Fig. 5). A rate adaptive protocol
was proposed in [18], however the security of the protocol was
not addressed and the impact of the excess of information on
the public channel was not discussed.

III. RATE ADAPTIVE INFORMATION RECONCILIATION

A. Formalism

In this section we describe a protocol for the information
reconciliation problem based on Wyner’s coset scheme, briefly
sketched above. Before describing the protocol we review
some basic formalism.

Let ζ(n, k) be a binary linear code of length n, k infor-
mation symbols, and R0 = k/n its information rate. This
code can be specified by a parity matrix H . Let x be a n-
length vector, such that m(x) = HxT stands for the syndrome
of x. The code ζ(n, k) contains every n-length vector v
such that m(v) = 0. The best way to choose the bins for
Wyner’s schema, is to choose bins with a structure that allows
differentiating between them. One natural way is to assign a
bin to each coset of a linear code [11]. Each bin can be seen
as an affine code, characterised by syndrome mb, that contains
every n-length vector v such that m(v) = mb. There are 2n−k

different syndromes, thus allowing Alice to encode x with rate
(n− k)/n.

It was first shown in [19] and generalised in [15] that
LDPC codes can be successfully used in order to address the
problem of coding correlated sources with side information at
the decoder. The message passing decoder must be modified to
take into account the different syndromes and, channel coding

techniques that lead to channel capacity approaching codes,
lead also to codes approaching the Slepian-Wolf limit [17].
However, a linear code reveals a fixed amount of information
independently of the channel characteristics which might not
be appropriate in many situations. An scenario with changing
statistics can arise in real settings due, for example, to the
sensitivity of physical devices or to the presence of an active
eavesdropper. To address the problem of secret key agreement
when the statistics of the channel can vary from execution to
execution, a suitable solution is provided by puncturing and
shortening strategies (see Fig. 3).

A punctured code modifies an existing ζ(n, k) code by
removal of a set of p from the total n symbols, thus becoming
a code of length n− p and dimension k, ζ ′(n− p, k). In the
same fashion, a shortened code is a modified code in which
s symbols from the code are known or fixed. A shortened
code becomes a code of length n − s and dimension k − s,
ζ ′(n − s, k − s). A code ζ(n, k) in which p symbols are
punctured and s symbols are shortened becomes a code with
rate:

R =
k − s

n− s− p
(8)

This expression can also be written as a function of R0,
σ = s/n and π = p/n: the original coding rate, the fraction
of shortened symbols and the fraction of punctured symbols,
respectively. Puncturing and shortening provide the means to
adapt the rate of an existing code, however once chosen p
and s the new rate is fixed. It should also be noted that there
is a certain amount of efficiency loss as the percentage of
punctured and shortened bits increases and even a limiting
threshold of puncturing depending on the code [20].

B. Rate Adaptive Protocol

The following definition delineates a generic protocol able
to adapt the information rate to varying channel parameters
through puncturing and shortening strategies, s + p random
bits are added to the original strings. The protocol transmits
s+n−k bits through the public channel, which can stand for
the code syndrome and s shortened bits.

Definition 2: Let ζ(n, k) be a linear code and s, p ∈ N

two parameters such that 0 ≤ s ≤ k, 0 ≤ p ≤ n, s + p ≤
n. An sp-protocol allows two parties holding x and y two
(n− p− s)-length binary sequences to reconcile their strings.
This protocol transmits s+n−k bits through a public channel
and extends both sequences x and y with s + p random bits
into x̂ and ŷ two n-length sequences.

We now describe a practical sp-protocol which is a formal
and simplified version of a protocol described in [18] adapted
for easier analysis. Let R0 be the rate of ζ(n, k), in order to
reconcile their string the two parties Alice and Bob perform
the following steps:

Step 0: Alice and Bob fix a parameter δ = σ + π standing
for the number of symbols to either puncture or shorten, this
allows them to reconcile the same amount of information on
each protocol execution. They characterise as well f(perr),
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(a) Puncturing (b) Shortening

Fig. 3. Example of Tanner graph of an LDPC code with puncturing and shortening strategies applied on only one symbol.

Fig. 4. Extended string construction. It is shown how the extended string x̂
is constructed from a random permutation of two strings: the original string to
be reconciled, x, and a string consisting of punctured and shortened symbols,
x′.

the efficiency function describing the behaviour of the code
under shortening and puncturing, where perr stands for the
error probability.

Prior to the execution of the protocol Alice and Bob might
have an estimate of the discrepancies between their strings or
they might have published and subsequently discarded a subset
of their original strings in order to infer the error probability
perr. Once estimated perr and having measured the quality of
ζ under perforation and shortening, Alice and Bob choose s
and p such that R the rate of the equivalent code allows to
reconcile both strings with high probability while minimising
s.

Step 1: Alice creates an extended string x̂ (see Fig. 4):

x̂ = g (x|rA(p)|rA(s)) (9)

where g is a permutation of x|rA(p)|rA(s), rA(p) is a random
string of length p, and rA(s) is a random string of length s.

Alice transmits to Bob m(x̂) and rA(s).
Step 2: Bob receives Alice message and constructs an

extended string ŷ:

ŷ = g (y|rB(p)|rA(s)) (10)

where rB(p) is a random string of length p generated by Bob.

Bob recovers x̂ with high probability using the modified
belief propagation decoder described in [19].

Example 1: Alice and Bob have a code ζ(2 × 105, 105)
with an empirical efficiency below f(perr) ≤ 1.09 in the range
[0.065, 0.075] (see Fig. 5) for δ = 0.05. Alice transmits to Bob
a string of length 1.9×105 over a BSC with known crossover
probability perr = 0.068. In a BSC the conditional entropy can
be expressed as H(X|Y ) = h(perr), and thus the maximum
coding rate R = 1 − f(perr)h(perr). Then, from Eq. 8, they
should puncture p = 5, 772 bits and shorten s = 4, 228 bits
to reconcile their extended strings with high probability and
f ≤ 1.09.

An important remark here is that Alice and Bob reconcile
their extended strings with efficiency f close to 1, while
f , as defined on Eq. 7 for reconciling the original strings,
is higher. In the next section we show that the amount of
distillable secret bits is not diminished by the higher f value
and, indeed, the relevant figure is the reconciliation efficiency
of the extended strings.

IV. SECURITY ANALYSIS

The security of sp-protocols is addressed in this section.
As a first step we review the privacy amplification results that
allow to take into account the impact of reconciliation in the
final key.

We introduce another entropy measure: min-entropy, as it
is used in the following discussion. It is defined as:

H∞(X) = − logmax
x

PX(x) (11)

Generally H∞(X) ≤ H(X), being equal only if X out-
comes are given by a uniform distribution. We further define
the conditional min-entropy as:

H∞(X|Y ) = min
y

H∞(X|Y = y) (12)
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Theorem 1: Given three constants δ,∆1,∆2 ≥ 0, after n
uses of a binary symmetric channel ruled by PZ′|X , if Eve’s
min-entropy on X is known to be bounded as H∞(X|Z ′ =
z′) ≥ δn, there exists ([4]) an extractor function E : Fn

2 ×
Fu
2 → F k

2 , with u ≤ ∆1n and k ≥ (δ − ∆2)n, such that if
Alice and Bob agree on secret key K = E(X,U), where U
is a sequence of u random uniform bits, the entropy of K is
given by:

H(K|U,Z ′ = z′) ≥ k − 2−n1/2−o(1)

(13)

which wipes all the information from the eavesdropper pro-
vided that Alice and Bob can estimate H∞(K|Z ′).

The effects of the |C| redundancy bits shared on the
conditional min-entropy can also be bounded using a security
parameter t with probability 1− 2−t [4]:

H∞(X|Z ′ = zc) ≥ H∞(X|Z = z)− |C| − t (14)

measuring the interest of good information reconciliation,
every redundancy bit used in this phase reduces the final secret
key.

We proceed to demonstrate that the use of an sp-protocol
does not impose any constraint on the achievable secret key
rate. Moreover, from this demonstration it is possible to infer
that the quality of the information reconciliation procedure
depends only on the quality of the error correction code. We
begin with the proof of the following lemma (Lemma 1) that
allows to exploit the random construction of the punctured and
shortened bits in the proposed protocol.

Lemma 1: Let X , Y and Z be three random variables, if
Y is independent from variables X and Z the mutual min-
entropy of X and Y conditioned to Z can be expressed by:

H∞(XY |Z) = H∞(X|Z) +H∞(Y ) (15)

Proof:

H∞(XY |Z) = min
z

H∞(XY |Z = z) (16)

= −min
z

logmax
xy

P (xy|z) (17)

= −min
z

logmax
xy

P (x|z)P (y|z) (18)

= −min
z

[

logmax
x

P (x|z) + logmax
y

P (y|z)

]

(19)

= H∞(X|Z) +H∞(Y ) (20)

where Eq. 18 derives from the consideration that X and Y
being independent variables, and Eq. 20 from Y and Z being
independent variables.

Theorem 2: Given a code ζ(n, k), a security constant t, the
public communication C, and Z the eavesdropper information,

then the min-entropy of the variable X̂ constructed by the sp-
protocol, is with probability 1−2−t greater or equal than that
of using an adapted error correcting code of rate R to reconcile
X and Y minus the security constant:

H∞(X̂|ZC) ≥ H∞(X|Z)− |X|(1−R)− t (21)

Proof:

Directly given by Eq. 14:

H∞(X̂|ZC) ≥ H∞(X̂|Z)− |C| − t (22)

Distinguishing in X̂ part of the variable that corresponds
to the sequence to be reconciled, X , and the additional
variable used to extend the original sequence, X ′ (see its
correspondence with strings in Fig. 4):

= H∞(XX ′|Z)− |C| − t (23)

Since X ′ is independent of Z and X by construction,
Lemma 1 can be applied:

= H∞(X|Z) +H∞(X ′)− |C| − t (24)

The entropy of H∞(X ′) takes the value of the number of
random p+ s bits:

= H∞(X|Z) + |X|
π + σ

1− π − σ
− |C| − t (25)

The length of the conversation |C| is s + n − k, which in
the proposed protocol stand for the s shortened bits and the
syndrome of X ′. It can be written as a function of the size of
X , π and σ:

= H∞(X|Z) + |X|
π + σ

1− π − σ
− |X|

(1−R0) + σ

1− π − σ
− t (26)

and thus

= H∞(X|Z)− |X|(1−R)− t (27)

V. NUMERICAL RESULTS

We discuss the efficiency of several protocols in this section.
In order to illustrate the performance of the sp-protocol in
Fig. 5 we compare the results of adapted LDPC codes to reg-
ular LDPC codes without adaptation and to Cascade. We show
as well the theoretical efficiency in case of infinite length [18],
this curve indicates the expected asymptotic behaviour of the
protocol.

Following Theorem 2 two strings can be reconciled with the
efficiency of a rate adapted code. In the figure, the efficiency of
the punctured and shortened codes is below 1.1 in the whole
range of perr, close to the theoretical limit. In comparison
the codes without adaptation offer a better result close to their
threshold but the efficiency quickly drops as the working point
moves away from the threshold. On the other hand Cascade
exhibits a poorer efficiency on the perr range considered.
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Fig. 5. Reconciliation efficiency of Cascade [12], LDPC codes without
puncturing and shortening strategies [17], and the sp-protocol in a practical
setting as defined in Eq. 7. Two LDPC codes have been chosen to cover
the crossover range perr ∈ [0.055, 0.08] using the proposed sp-protocol.
Both codes, ζ1(2 × 105, 1.2 × 105) with coding rate R = 0.6 and ζ2(2 ×

105, 1.3 × 105) with coding rate R = 0.65, allow to cover the range with
δ = 0.05, while ζ2 with δ = 0.1 also covers the range of interest. A third
code with rate R = 0.55 has been used in order to compare the efficiency of
the studied crossover range with a direct strategy, i.e. without using puncturing
or shortening, as proposed in [18].

VI. CONCLUSION

On this paper it has been discussed the problem of informa-
tion reconciliation in the context of secret key agreement. The
sp-protocol, a simple protocol based on puncturing and short-
ening LDPC codes has been proposed. This protocol allows
the eavesdropper to gather the same amount of information
than an adapted code would reveal; even if it is exchanged
more data on the public channel.

It had been argued that information reconciliation based
on error correction codes was not optimal for channels with
changing characteristics [17], having Alice and Bob access
to a discrete set of codes the efficiency of the reconciliation
exhibits a saw behavior. The sp-protocol allow Alice and Bob
to reconcile their chains with a continuous efficiency curve,
and as the efficiency of LDPC codes under puncturing and
shortening can be analytically described and optimised, the
results proved in this paper allow to address the information
reconciliation problem as a code design problem. The numer-
ical data on section V indicate that efficiency values close to
the theoretical limits can be obtained.
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